Skip to main content

Computational Methods for High-Resolution Gravity Field Modeling

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 268 Accesses

Definition

Computational methods, like the boundary element, finite element, or finite volume methods, are numerical discretization methods that can be used for high-resolution gravity field modeling. They are efficient to solve the geodetic boundary value problems in a space domain. To obtain high-resolution numerical solutions usually lead to large-scale parallel computations that can be performed using high-performance computing (HPC) facilities.

Introduction

A determination of the Earth’s gravity field is usually formulated in terms of the geodetic boundary value problems (BVPs). There exist various numerical approaches to solve such potential problems. In geodesy, the spherical harmonics (SH) based methods are usually used for global gravity field modeling. They solve the problem in a frequency domain, and nowadays, they have become a very efficient and sophisticated tool. A recent development of high-performance computing (HPC) facilities has brought new opportunities for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baláš, J., Sládek, J., Sládek, V., 1989. Stress Analysis by Boundary Element Methods. Elsevier, Amsterdam.

    Google Scholar 

  • Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H., 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA

    Google Scholar 

  • Brebbia, C.A., Telles, J.C.F., Wrobel, L.C., 1984. Boundary Element Techniques, Theory and Applications in Engineering. Springer-Verlag, New York.

    Book  Google Scholar 

  • Brenner, S.C., Scott, L. R., 2002. The Mathematical Theory of Finite Element Methods 2nd ed. Springer-Verlag, New York.

    Book  Google Scholar 

  • Čunderlík, R., Mikula, K., 2010. Direct BEM for high-resolution gravity field modelling. Studia Geophysica et Geodaetica 54(2): 219–238

    Article  Google Scholar 

  • Čunderlík, R., Mikula, K., and Mojzeš, M., 2008. Numerical solution of the linearized fixed gravimetric boundary-value problem. Journal of Geodesy 82: 15–29

    Article  Google Scholar 

  • Čunderlík, R., Tenzer R., Abdalla A., Mikula K., 2010. The quasigeoid modelling in New Zealand using the boundary element method. Contributions to Geophysics and Geodesy 40(4): 283–297

    Google Scholar 

  • Eymard, R., Gallouet, T., and Herbin, R., 2001. Finite volume approximation of elliptic problems and convergence of an approximate gradient. Applied Numerical Mathematics 37(1–2): 31–53

    Article  Google Scholar 

  • Fašková, Z., Čunderlík, R. and Mikula, K., 2010. Finite Element Method for Solving Geodetic Boundary Value Problems. Journal of Geodesy 84: 135–144

    Article  Google Scholar 

  • Hartmann, F., 1989. Introduction to Boundary Elements. Theory and Applications. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Holota P., 1997. Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. Journal of Geodesy 71: 640–651.

    Article  Google Scholar 

  • Koch, K.R., Pope, A.J., 1972. Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bulletin Géodésique 46: 467–476

    Article  Google Scholar 

  • Laursen, M.E., Gellert, M., 1978. Some Criteria for Numerically Integrated Matrices and Quadrature Formulas for Triangles. International Journal for Numerical Methods in Engineering 12: 67–76

    Article  Google Scholar 

  • Lucquin, B., Pironneau, O., 1998. Introduction to Scientific Computing. Wiley, Chichester.

    Google Scholar 

  • Macák, M., Minarechová, Z., Mikula, K., 2014. A novel scheme for solving the oblique derivative boundary-value problem. Studia Geophysica et Geodaetica 58(4): 556–570

    Article  Google Scholar 

  • Mantič, V., 1993. A new formula for the C-matrix in the Somigliana identity. Journal of Elasticity 33(3): 191–201

    Article  Google Scholar 

  • Minarechová Z., Macák M., Čunderlík R., Mikula K. 2015. High-Resolution Global Gravity Field Modelling by the Finite Volume Method. Studia Geophysica et Geodaetica 59(1): 1–20

    Article  Google Scholar 

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., and Factor, J.K., 2012. The development of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117: B04406 DOI:https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  • Rektorys, K., 1974. Variační metody v inženýrských problémech a v problémech matematické fyziky. STNL, Praha. (In Czech)

    Google Scholar 

  • Schatz, A.H., Thomée, V., Wendland, W.L., 1990. Mathematical Theory of Finite and Boundary Element Methods. Birkhauser Verlag, Basel/Boston/Berlin.

    Book  Google Scholar 

  • Šprlák, M., Fašková, Z., and Mikula, K., 2011. On the application of the coupled finite-infinite element method to geodetic boundary-value problem. Studia Geophysica et Geodaetica 55(3): 479–487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Čunderlík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Čunderlík, R., Mikula, K., Minarechová, Z., Macák, M. (2018). Computational Methods for High-Resolution Gravity Field Modeling. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_109-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_109-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02370-0

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics