Skip to main content

Operational Significance of the Deviation Equation in Relativistic Geodesy

  • Living reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

Deviation equation . Second-order differential equation for the 4-vector which measures the distance between reference points on neighboring world lines in spacetime manifolds.

Relativistic geodesy . Science representing the Earth (or any planet), including the measurement of its gravitational field, in a four-dimensional curved spacetime using differential-geometric methods in the framework of Einstein’s theory of gravitation (general relativity).

Introduction

How does one measure the gravitational field in Einstein’s theory? What is the foundation of relativistic gradiometry? The deviation equation gives answers to these fundamental questions.

In Einstein’s theory of gravitation, i.e., general relativity, the gravitational field manifests itself in the form of the Riemannian curvature tensor Rabcd (Synge, 1960). This 4th-rank tensor can be defined as a measure of the noncommutativity of the parallel transport process of the underlying spacetime manifold (Synge and...

This is a preview of subscription content, log in via an institution.

References

  • Ciufolini, I., and Demianski, M., 1986. How to measure the curvature of space-time. Physical Review D, 34, 1018.

    Article  Google Scholar 

  • Levi-Civita, T., 1926. Sur l’écart géodésique. Mathematische Annalen, 97, 291.

    Article  Google Scholar 

  • Pirani, F. A. E., 1956. On the physical significance of the Riemann tensor. Acta Physica Polonica, 15, 389.

    Google Scholar 

  • Puetzfeld, D., and Obukhov, Yu. N., 2016. Generalized deviation equation and determination of the curvature in General Relativity. Physical Review D, 93, 044073.

    Google Scholar 

  • Synge, J. L., 1926. The first and second variations of the length integral in Riemannian space. Proceedings of the London Mathematical Society, 25, 247.

    Article  Google Scholar 

  • Synge, J. L., 1927. On the geometry of dynamics. Philosophical Transactions of the Royal Society of London. Series A, 226, 31.

    Article  Google Scholar 

  • Synge, J. L., 1960. Relativity: The General Theory. Amsterdam: North-Holland.

    Google Scholar 

  • Synge, J. L., and Schild, A., 1978. Tensor Calculus. New York: Dover.

    Google Scholar 

  • Szekeres, P., 1965. The gravitational compass. Journal of Mathematical Physics, 6, 1387.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant PU 461/1-1 (D.P.). The work of Y.N.O. was partially supported by PIER (“Partnership for Innovation, Education and Research” between DESY and Universität Hamburg) and by the Russian Foundation for Basic Research (Grant No. 16-02-00844-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Puetzfeld .

Editor information

Editors and Affiliations

Explicit Solutions

Explicit Solutions

A.1 General Spacetime

$$ 01:{R}_{1010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_1{c}_{10}^{-2}, $$
(14)
$$ 02:{R}_{2010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_2{c}_{10}^{-2}, $$
(15)
$$ 03:{R}_{3010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_3{c}_{10}^{-2}, $$
(16)
$$ 04:{R}_{2020}=\frac{3}{4}{{}^{\left(1,2\right)}A}_2{c}_{10}^{-2}, $$
(17)
$$ 05:{R}_{3020}=\frac{3}{4}{{}^{\left(1,2\right)}A}_3{c}_{10}^{-2}, $$
(18)
$$ 06:{R}_{3030}=\frac{3}{4}{{}^{\left(1,3\right)}A}_3{c}_{10}^{-2}, $$
(19)
$$ 07:{R}_{2110}=\frac{3}{4}{{}^{\left(2,1\right)}A}_2{c}_{21}^{-1}{c}_{20}^{-1}-{R}_{2010}{c}_{21}^{-1}{c}_{20}, $$
(20)
$$ 08:{R}_{3110}=\frac{3}{4}{{}^{\left(2,1\right)}A}_3{c}_{21}^{-1}{c}_{20}^{-1}-{R}_{3010}{c}_{21}^{-1}{c}_{20}, $$
(21)
$$ 09:{R}_{0212}=\frac{3}{4}{{}^{\left(3,1\right)}A}_0{c}_{32}^{-2}+{R}_{2010}{c}_{32}^{-1}{c}_{30}, $$
(22)
$$ {\displaystyle \begin{array}{c}10:{R}_{1212}=\frac{3}{4}{{}^{\left(2,2\right)}A}_2{c}_{21}^{-2}-{R}_{2020}{c}_{20}^2{c}_{21}^{-2}\\ {}\qquad -2{R}_{0212}{c}_{21}^{-1}{c}_{20},\end{array}} $$
(23)
$$ 11:{R}_{3220}=\frac{3}{4}{{}^{\left(3,2\right)}A}_3{c}_{32}^{-1}{c}_{30}^{-1}-{R}_{3020}{c}_{32}^{-1}{c}_{30}, $$
(24)
$$ 12:{R}_{0313}=\frac{3}{4}{{}^{\left(4,1\right)}A}_0{c}_{43}^{-2}+{R}_{3010}{c}_{43}^{-1}{c}_{40}, $$
(25)
$$ {\displaystyle \begin{array}{c}13:{R}_{1313}=\frac{3}{4}{{}^{\left(2,3\right)}A}_3{c}_{21}^{-2}-{R}_{3030}{c}_{20}^2{c}_{21}^{-2}\\ {}\qquad -2{R}_{0313}{c}_{21}^{-1}{c}_{20},\end{array}} $$
(26)
$$ 14:{R}_{0323}=\frac{3}{4}{{}^{\left(4,2\right)}A}_0{c}_{43}^{-2}+{R}_{3020}{c}_{43}^{-1}{c}_{40}, $$
(27)
$$ {\displaystyle \begin{array}{c}15:{R}_{2323}=\frac{3}{4}{{}^{\left(4,2\right)}A}_2{c}_{43}^{-2}-{R}_{2020}{c}_{43}^{-2}{c}_{40}^2\\ {}\qquad +2{R}_{3220}{c}_{43}^{-1}{c}_{40},\end{array}} $$
(28)
$$ {\displaystyle \begin{array}{lll}16:{R}_{3132}=\frac{3}{8}{{}^{\left(5,3\right)}A}_3{c}_{52}^{-1}{c}_{51}^{-1}-\frac{1}{2}{R}_{3030}{c}_{52}^{-1}{c}_{51}^{-1}{c}_{50}^2\\ {}& -{R}_{0313}{c}_{52}^{-1}{c}_{50}-{R}_{0323}{c}_{51}^{-1}{c}_{50}\\ {}& \quad -\frac{1}{2}{R}_{1313}{c}_{52}^{-1}{c}_{51}-\frac{1}{2}{R}_{2323}{c}_{52}{c}_{51}^{-1},\end{array}} $$
(29)
$$ {\displaystyle \begin{array}{lll}17:{R}_{1213}=\frac{3}{8}{{}^{\left(6,1\right)}A}_1{c}_{63}^{-1}{c}_{62}^{-1}-\frac{1}{2}{R}_{1010}{c}_{63}^{-1}{c}_{62}^{-1}{c}_{60}^2\\ {}& +{R}_{2110}{c}_{63}^{-1}{c}_{60}+{R}_{3110}{c}_{62}^{-1}{c}_{60}\\ {}& \quad -\frac{1}{2}{R}_{1212}{c}_{63}^{-1}{c}_{62}-\frac{1}{2}{R}_{1313}{c}_{63}{c}_{62}^{-1},\end{array}} $$
(30)
$$ 18:{R}_{0231}=\frac{1}{4}{{}^{\left(4,1\right)}A}_2{c}_{40}^{-1}{c}_{43}^{-1}-\frac{1}{4}{{}^{\left(2,2\right)}A}_3{c}_{20}^{-1}{c}_{21}^{-1}+\frac{1}{3}\left({R}_{3020}{c}_{20}{c}_{21}^{-1}+{R}_{3121}{c}_{21}{c}_{20}^{-1}-{R}_{2010}{c}_{40}{c}_{43}^{-1}-{R}_{2313}{c}_{43}{c}_{40}^{-1}\right), $$
(31)
$$ 19:{R}_{0312}=\frac{1}{4}{{}^{\left(4,1\right)}A}_2{c}_{40}^{-1}{c}_{42}^{-1}+\frac{1}{2}{{}^{\left(2,2\right)}A}_3{c}_{20}^{-1}{c}_{21}^{-1}-\frac{1}{3}\left(2{R}_{3020}{c}_{20}{c}_{21}^{-1}+2{R}_{3121}{c}_{21}{c}_{20}^{-1}+{R}_{2010}{c}_{40}{c}_{43}^{-1}+{R}_{2313}{c}_{43}{c}_{40}^{-1}\right), $$
(32)
$$ 20:{R}_{3212}=\frac{3}{4}{{}^{\left(4,1\right)}A}_3{c}_{20}^{-1}{c}_{21}^{-1}{c}_{50}{c}_{52}^{-1}-\frac{3}{4}{{}^{\left(5,2\right)}A}_3{c}_{51}^{-1}{c}_{52}^{-1}+{R}_{3121}{c}_{52}^{-1}\left({c}_{51}-{c}_{50}{c}_{21}{c}_{20}^{-1}\right)+{R}_{3220}{c}_{50}{c}_{51}^{-1}+{R}_{3020}{c}_{50}{c}_{52}^{-1}\left({c}_{50}{c}_{51}^{-1}-{c}_{20}{c}_{21}^{-1}\right). $$
(33)

A.2 Vacuum Spacetime

$$ 01:{C}_{1010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_1{c}_{10}^{-2}, $$
(34)
$$ 02:{C}_{2010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_2{c}_{10}^{-2}, $$
(35)
$$ 03:{C}_{3010}=\frac{3}{4}{{}^{\left(1,1\right)}A}_3{c}_{10}^{-2}, $$
(36)
$$ 04:{C}_{2020}=\frac{3}{4}{{}^{\left(1,2\right)}A}_2{c}_{10}^{-2}, $$
(37)
$$ 05:{C}_{3020}=\frac{3}{4}{{}^{\left(1,2\right)}A}_3{c}_{10}^{-2}, $$
(38)
$$ 06:{C}_{2110}=\frac{3}{4}{{}^{\left(2,1\right)}A}_2{c}_{21}^{-1}{c}_{20}^{-1}-{C}_{2010}{c}_{21}^{-1}{c}_{20}, $$
(39)
$$ 07:{C}_{3110}=\frac{3}{4}{{}^{\left(2,1\right)}A}_3{c}_{21}^{-1}{c}_{20}^{-1}-{C}_{3010}{c}_{21}^{-1}{c}_{20}, $$
(40)
$$ 08:{C}_{0212}=\frac{3}{4}{{}^{\left(3,1\right)}A}_0{c}_{32}^{-2}+{C}_{2010}{c}_{32}^{-1}{c}_{30}, $$
(41)
$$ 09:{C}_{0231}=\frac{1}{4}{{}^{\left(4,1\right)}A}_2{c}_{40}^{-1}{c}_{43}^{-1}-\frac{1}{4}{{}^{\left(2,2\right)}A}_3{c}_{20}^{-1}{c}_{21}^{-1}\qquad+\frac{1}{3}{C}_{3020}\left({c}_{20}{c}_{21}^{-1}+{c}_{21}{c}_{20}^{-1}\right)\qquad -\frac{1}{3}{C}_{2010}\left({c}_{40}{c}_{43}^{-1}+{c}_{43}{c}_{40}^{-1}\right), $$
(42)
$$ 10:{C}_{0312}=\frac{1}{4}{{}^{\left(4,1\right)}A}_2{c}_{40}^{-1}{c}_{42}^{-1}+\frac{1}{2}{{}^{\left(2,2\right)}A}_3{c}_{20}^{-1}{c}_{21}^{-1}-\frac{2}{3}{C}_{3020}\left({c}_{20}{c}_{21}^{-1}+{c}_{21}{c}_{20}^{-1}\right)+\frac{1}{3}{C}_{2010}\left({c}_{40}{c}_{43}^{-1}+{c}_{43}{c}_{40}^{-1}\right). $$
(43)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Puetzfeld, D., Obukhov, Y.N. (2019). Operational Significance of the Deviation Equation in Relativistic Geodesy. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_164-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_164-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02370-0

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics