Skip to main content

Cold-Atom Absolute Gravimetry

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Definition

Cold-atom absolute gravimetry: Measurement of the gravitational acceleration based on laser-cooled atom interferometry.

Introduction

The principle of measurement of the gravitational acceleration by dropping atoms rose up in the 1990s. The first applications quickly revealed the promising alternative of cold-atom gravimetry to classical free-fall techniques currently used to perform accurate and absolute measurements of the Earth gravity field (see Kasevich and Chu, 1992; Peters et al., 2009). Over the last two decades, practical realizations of instrumental devices based on atomic interferometry (cold-atom gravimeters) have thus been developed by different research laboratories in the world (Bodart et al., 2010; Charriere et al., 2012; Poli et al., 2010; Zhou et al., 2011; Altin et al., 2013; Bidel et al., 2013; Hauth et al., 2013; Hu et al., 2013; Wu et al., 2014). Based on the simple principle that measuring the acceleration of a freely falling mass provides an absolute...

This is a preview of subscription content, log in via an institution.

References and Reading

  • Aguilera, D., et al., 2014. STE-QUEST—test of the universality of free fall using cold atom interferometry. Classical and Quantum Gravity, 31, 115010.

    Article  Google Scholar 

  • Altin, P. A., et al., 2013. Precision atomic gravimeter based on Bragg diffraction. New Journal of Physics, 15, 023009.

    Article  Google Scholar 

  • Arias, E. F., et al., 2012. Final report of key comparison CCM.G-K1: international comparison of absolute gravimeters ICAG2009. Metrologia, 49, 07011.

    Article  Google Scholar 

  • Bidel, Y., Carraz, O., Charriere, R., Cadoret, M., Zahzam, N., and Bresson, A., 2013. Compact cold atom gravimeter for field applications. Applied Physics Letters, 102, 144107.

    Article  Google Scholar 

  • Bodart, Q., Merlet, S., Malossi, N., Pereira Dos Santos, F., Bouyer, P., and Landragin, A., 2010. A cold atom pyramidal gravimeter with a single laser beam. Applied Physics Letters, 96, 134101.

    Article  Google Scholar 

  • Bonnin, A., Zahzam, N., Bidel, Y., and Bresson, A., 2013. Simultaneous dual-species matter-wave accelerometer. Physical Review A, 88, 043615.

    Article  Google Scholar 

  • Carraz, O., Siemes, C., Massotti, L., Haagmans, R., and Silvestrin, P., 2014. A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Science and Technology, 26, 139–145.

    Article  Google Scholar 

  • Charriere, R., Cadoret, M., Zahzam, N., Bidel, Y., and Bresson, A., 2012. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Physical Review A, 85, 013639.

    Google Scholar 

  • Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S., and Kasevich, M. A., 2013. Multiaxis inertial sensing with long-time point source atom interferometry. Physical Review Letters, 111, 083001.

    Article  Google Scholar 

  • Dimopoulos, S., Graham, P. W., Hogan, J. M., Kasevich, M. A., and Rajendran, S., 2008. Atomic gravitational wave interferometric sensor. Physical Review D, 78, 122002.

    Article  Google Scholar 

  • Fixler, J. B., Foster, G. T., McGuirk, J. M., and Kasevich, M. A., 2007. Science, 315, 74.

    Article  Google Scholar 

  • Francis, O., et al., 2013. The European Comparison of Absolute Gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations. Metrologia, 50, 257.

    Article  Google Scholar 

  • Geiger, R., Ménoret, V., Stern, G., Zahzam, N., Cheinet, P., Battelier, B., Villing, A., Moron, F., Lours, M., Bidel, Y., Bresson, A., Landragin, A., and Bouyer, P., 2011. Detecting inertial effects with airborne matter-wave interferometry. Nature Communications, 2, 474.

    Article  Google Scholar 

  • Gillot, P., Francis, O., Landragin, A., Pereira Dos Santos, F., and Merlet, S., 2014. Stability comparison of two absolute gravimeters at their best capabilities: optical versus atomic interferometers. Metrologia, 51, L15–L17.

    Article  Google Scholar 

  • Guirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J., and Kasevich, M. A., 2002. Sensitive absolute-gravity gradiometry using atom interferometry. Physical Review A, 65, 033608.

    Article  Google Scholar 

  • Hauth, M., Freier, C., Schkolnik, V., Senger, A., Schmidt, M., and Peters, A., 2013. First gravity measurements using the mobile atom interferometer GAIN. Applied Physics B, 113, 49–55.

    Article  Google Scholar 

  • Hu, Z. K., Sun, B. L., Duan, X. C., Zhou, M. K., Chen, L. L., Zhan, S., Zhang, Q. Z., and Luo, J., 2013. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Physical Review A, 88, 043610.

    Article  Google Scholar 

  • Kasevich, M., and Chu, S., 1992. Measurement of the gravitational acceleration of an atom with a light pulse atom interferometer. Applied Physics B, 54, 321–332.

    Article  Google Scholar 

  • Le Gouët, J., Mehlstäubler, T. E., Kim, J., Merlet, S., Clairon, A., Landragin, A., and Pereira Dos Santos, F., 2008. Limits to the sensitivity of a low noise compact atomic gravimeter. Applied Physics B, 92, 133–144.

    Article  Google Scholar 

  • Louchet-Chauvet, A., Farah, T., Bodart, Q., Clairon, A., Landragin, A., Merlet, S., and Pereira Dos Santos, F., 2011. The influence of transverse motion within an atomic gravimeter. New Journal of Physics, 13, 065025.

    Article  Google Scholar 

  • Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Pereira Dos Santos, F., Gitlein, O., and Timmen, L., 2010. Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia, 47, L9–L11.

    Article  Google Scholar 

  • Niebauer, T. N., Sasagawa, G., Faller, J., and Hilt, R., 1995. A new generation of absolute gravimeters. Metrologia, 32, 159–180.

    Article  Google Scholar 

  • Peters, A., Chung, K. Y., and Chu, S., 2001. High-precision gravity measurement using atom interferometry. Metrologia, 38, 25–61.

    Article  Google Scholar 

  • Peters, A., Chung, K.-Y. and Chu, S., 2009, Measurement of gravitational acceleration by dropping atoms. Nature, 400, 849.

    Google Scholar 

  • Poli, N., Wang, F.-Y., Tarallo, M. G., Alberti, A., Prevedelli, M., and Tino, G. M., 2010. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Physical Review Letters, 106, 038501.

    Article  Google Scholar 

  • Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M., and Tino, G. M., 2014. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 510, 518.

    Article  Google Scholar 

  • Van Camp, M., Williams, S. D. P., and Francis, O., 2005. Uncertainty of absolute gravity measurements. Journal of Geophysical Research, 110, B05406.

    Google Scholar 

  • Wu, B., Wang, Z., Cheng, B., Wang, Q., Xu, A., and Lin, Q., 2014. The investigation of a μGal-level cold atom gravimeter for field applications. Metrologia, 51, 452.

    Article  Google Scholar 

  • Zhou, L., Xiong, Z.-Y., Yang, W., Tang, B., Peng, W.-C., Wang, Y.-B., Xu, P., Wang, J., and Zhan, M.-S., 2011. Measurement of local gravity via a cold atom interferometer. Chinese Physics Letters, 28(1), 013701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Pereira dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

dos Santos, F.P., Bonvalot, S. (2016). Cold-Atom Absolute Gravimetry. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_30-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_30-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Cold-Atom Absolute Gravimetry
    Published:
    15 July 2016

    DOI: https://doi.org/10.1007/978-3-319-02370-0_30-2

  2. Original

    Cold-Atom Absolute Gravimetry
    Published:
    29 April 2016

    DOI: https://doi.org/10.1007/978-3-319-02370-0_30-1