Skip to main content

Geodesy in Polar Regions

  • Living reference work entry
  • First Online:
  • 704 Accesses

Synonyms

Polar geodesy

Definition

Due to F. R. Helmert (1880), geodesy is the science of surveying and mapping the Earth’s surface. In the modern understanding of geodesy, this means to determine the figure of the Earth: the geometry of the Earth’s surface and the (exterior) gravity field of the Earth with its distinct equipotential surface, the geoid, to determine the orientation of the Earth in space as well as temporal changes of all these quantities. This definition holds also for the application of geodesy in polar regions.

Introduction

The polar regions can be defined as those high-latitude regions bounded by the Arctic Circle to the south and by the Antarctic Circle to the north. Due to the obliquity of the ecliptic, the polar circles are situated at the latitudes 66.56° north and south, respectively. For the Antarctic, the limit is often taken at 60°S due to the Antarctic Treaty (signed 1959, effective since 1961) (Sir Watts, 1992). In the north, the Arctic Ocean is almost...

This is a preview of subscription content, log in via an institution.

References and Reading

  • Albertella, A., Savcenko, R., Janjic, T., Rummel, R., Bosch, W., and Schröter, J., 2012. High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophysical Journal International, 190(2), 922–930, doi:10.1111/j.1365-246X.2012.05531.x.

    Article  Google Scholar 

  • Bamber, J. L., Vaughan, D. G., and Joughin, I., 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science, 287(5456), 1248–1250.

    Article  Google Scholar 

  • Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M., Kendrick, E., Knudsen, P., Box, J. E., van Dam, T., Caccamise, D. J., II, Johns, B., Nylen, T., Abbott, R., White, S., Miner, J., Forsberg, R., Zhou, H., Wang, J., Wilson, T., Bromwich, D., and Francis, O., 2012. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proceedings of the National Academy of Sciences, 109(30), 11944–11948, doi:10.1073/pnas.1204664109.

    Article  Google Scholar 

  • Bindschadler, R. A., and Scambos, T. A., 1991. Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252(5003), 242–246.

    Article  Google Scholar 

  • Brozena, J., LaBreque, J., Peters, M., Bell, R., and Raymond, C., 1990. Airborne gravity measurement over sea-ice: the western Weddell Sea. Geophysical Research Letters, 17(11), 1941–1944, doi:10.1029/ GL017i011p01941.

    Article  Google Scholar 

  • Craymer, M. R., Piraszewski, M., and Henton, J. A. 2007. The North American Reference Frame (NAREF) project to densify the ITRF in North America. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, Texas, September 25–28, 2007, pp. 2145–2154.

    Google Scholar 

  • Crippen, R. E., and Blom, R. G. 1991. Measurement of subresolution terrain displacements using SPOT panchromatic imagery. In International Geoscience and Remote Sensing Symposium IGARSS’91. Remote Sensing: Global Monitoring for Earth Management, Vol. 3, pp. 1667–1670, doi:10.1109/IGARSS.1991.579546.

    Google Scholar 

  • Dietrich, R. (ed.). 1996. The Geodetic Antarctic Project GAP95, German Contributions to the SCAR 95 Epoch Campaign. Deutsche Geodätische Kommission, Reihe B, Heft 304. München: Verlag der Bayerischen Akademie der Wissenschaften.

    Google Scholar 

  • Dietrich, R., and Knöfel, C. 2011. Technical Assistance during the 2010/2011 CryoSat Schirmacheroase Antarctic Validation Activity. Final report, ESTEC Contract No. 4000103643/11/NL/CT, Dresden: Technische Universität, 81 pp. https://earth.esa.int/c/document_library/get_file?folderId=87248&name=DLFE-5810.pdf. Accessed 23 Feb 2015.

  • Dietrich, R., and Rülke, A., 2008. A precise reference frame for Antarctica from SCAR GPS campaign data and some geophysical implications. In Capra, A., and Dietrich, R. (eds.), Geodetic and Geophysical Observations in Antarctica – An Overview in the IPY Perspective. Berlin/Heidelberg: Springer, pp. 1–10.

    Chapter  Google Scholar 

  • Dietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller, H., Niemeier, W., Schenke, H.-W., and Seeber, G., 2004. Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global and Planetary Change, 42(1–4), 313–321, doi:10.1016/j.gloplacha.2003.12.003.

    Article  Google Scholar 

  • Dietrich, R., Rülke, A., and Scheinert, M., 2005. Present-day vertical crustal deformations in West Greenland from repeated GPS observations. Geophysical Journal International, 163, 865–874, doi:10.1111/j.1365-246X.2005.02766.x.

    Article  Google Scholar 

  • Dowman, I. J., Jacobsen, K., Konecny, G., and Sandau, R., 2012. High Resolution Optical Satellite Imagery. Dunbeath, Caithness: Whittles Publishing. 256 pp. ISBN 9781439894446.

    Google Scholar 

  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdor, D., 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2), RG2004, doi:10.1029/2005RG000183.

    Article  Google Scholar 

  • Fedorov, D. V., Schröder, L., Egorov, A. V., Knöfel, C., Brovkov, E. V., Richter, A., Lukin, V. V., and Dietrich, R., 2012. Determination of the ice sheet surface elevation profiles along the inland tracks in Antarctica by kinematic GPS-observations. Led i Sneg (Ice and Snow), 4(120), 49–56.

    Google Scholar 

  • Ferretti, A., Prati, C., and Rocca, F., 2001. Permanent scatters in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20, doi:10.1109/36.898661.

    Article  Google Scholar 

  • Flament, T., and Rémy, F., 2012. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. Journal of Glaciology, 58(211), 830–840.

    Article  Google Scholar 

  • Floberghagen, R., Fehringer, M., Lamarre, D., Muzi, D., Frommknecht, B., Steiger, C., Piñeiro, J., and da Costa, A., 2011. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. Journal of Geodesy, 85(11), 749–758, doi:10.1007/s00190-011-0498-3.

    Article  Google Scholar 

  • Forsberg, R., and Brozena, J. M., 1993. The Greenland airborne gravity project – comparison of airborne and terrestrial gravity data. In Montag, H., and Reigber, C. (eds.), Geodesy and Physics of the Earth, International Association of Geodesy Symposia 112. Berlin/Heidelberg: Springer, pp. 171–175, doi:10.1007/978-3-642-78149-0_42.

    Google Scholar 

  • Forsberg, R., Olesen, A. V., Yildiz, H., and Tscherning, C. C. 2011. Polar gravity fields from GOCE and airborne gravity. In Ouwehand, L. (ed.), Proceedings 4th International GOCE User Workshop, Munich, 31 March–01 April, 2011, ESA SP-696, ISBN 978-92-9092-260-5, 6 pp.

    Google Scholar 

  • Förste, C., Bruinsma, S. L., Abrikosov, O., Lemoine, J.-M., Schaller, T., Götze, H.-J., Ebbing, J., Marty, J. C., Flechtner, F., Balmino, G., and Biancale, R. 2014. EIGEN-6C4: The Latest Combined Global Gravity Field Model Including GOCE Data Up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse. Presented at 5th GOCE User Workshop, Paris, November 25–28, 2014.

    Google Scholar 

  • Förstner, W. (1982). On the geometric precision of digital correlation. In: Proceedings of the ISPRS Symposium “Mathematical Models, Accuracy Aspects and Quality Control”, Intl. Archives of Photogrammetry, 24 (III), pp. 176–189.

    Google Scholar 

  • Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1), 375–393, doi:10.5194/tc-7-375-2013.

    Article  Google Scholar 

  • Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., 1989. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, 94(B7), 9183–9191, doi:10.1029/JB094iB07p09183.

    Article  Google Scholar 

  • Groh, A., Ewert, H., Scheinert, M., Fritsche, M., Rülke, A., Richter, A., Rosenau, R., and Dietrich, R., 2012. An investigation of glacial isostatic adjustment over the Amundsen Sea Sector, West Antarctica. Global and Planetary Change, 98, 45–53, doi:10.1016/j.gloplacha.2012.08.001.

    Article  Google Scholar 

  • Groh, A., Ewert, H., Fritsche, M., Rülke, A., Rosenau, R., Scheinert, M., and Dietrich, R., 2014a. Assessing the current evolution of the Greenland Ice Sheet by means of satellite and ground-based observations. Surveys in Geophysics, 35(6), 1459–1480, doi:10.1007/s10712-014-9287-x.

    Article  Google Scholar 

  • Groh, A., Ewert, H., Rosenau, R., Fagiolini, E., Gruber, C., Floricioiu, D., Abdel Jaber, W., Linow, S., Flechtner, F., Eineder, M., Dierking, W., and Dietrich, R., 2014b. Mass, volume and velocity of the Antarctic Ice Sheet: present-day changes and error effects. Surveys in Geophysics, 35(6), 1481–1505, doi:10.1007/s10712-014-9286-y.

    Article  Google Scholar 

  • Gunter, B. C., Didova, O., Riva, R. E. M., Ligtenberg, S. R. M., Lenaerts, J. T. M., King, M. A., van den Broeke, M. R., and Urban, T., 2014. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere, 8(2), 743–760, doi:10.5194/tc-8-743-2014.

    Article  Google Scholar 

  • Heimes, F.-J., Hofmann, W., Karsten, A., Nottarp, K., and Stober, M. 1986. Die deutschen geodätischen Arbeiten im Rahmen der Internationalen Glaziologischen Grönland-Expedition (EGIG) 1959–1974. Deutsche Geodätische Kommission, Reihe B, Heft 281. München: Verlag der Bayerischen Akademie der Wissenschaften.

    Google Scholar 

  • Helm, V., Steinhage, D., Dietrich, R., and Rülke A. 2009. CryoVEx 08/09 – Antarctica Data Acquisition and Final Processing Report, ESTEC Contract Number 22100/08/NL/JA, Bremerhaven/Dresden: Alfred Wegener Instiute/Technische Universität, 60 pp. https://earth.esa.int/c/document_library/get_file?folderId=87248&name=DLFE-6001.pdf. Accessed 24 Feb 2015.

  • Helm, V., Humbert, A., and Miller, H., 2014. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. The Cryosphere, 8(4), 1539–1559.

    Article  Google Scholar 

  • Helmert, F. R. 1880. Die mathematischen und physikalischen Theorieen der höheren Geodäsie, Einleitung und I. Teil: Die Mathematischen Theorieen. Leipzig: Teubner Verlagsgesellschaft, 1962 (Reprint).

    Google Scholar 

  • Hofmann, W., Dorrer, E., and Nottarp, K., 1971. The Ross ice shelf survey (RISS) 1962–1963. In Mellor, M. (ed.), Antarctic Snow and Ice Studies. Washington, DC: American Geophysical Union, pp. 83–118, doi:10.1029/AR002p0083.

    Google Scholar 

  • Horwath, M., Dietrich, R., Bäßler, M., Nixdorf, U., Steinhage, D., Fritzsche, D., Damm, V., and Reitmayr, G., 2006. Nivlisen, an Antarctic ice shelf in Dronning Maud Land: geodetic-glaciological results from a combined analysis of ice thickness, ice surface height and ice flow observations. Journal of Glaciology, 52(176), 17–30.

    Article  Google Scholar 

  • Horwath, M., Legrésy, B., Rémy, F., Blarel, F., and Lemoine, J. M., 2012. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophysical Journal International, 189(2), 863–876.

    Article  Google Scholar 

  • Ivins, E. R., and James, T. S., 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science, 17(4), 537–549, doi:10.1017/S0954102004.

    Article  Google Scholar 

  • Jacobsen, K., 2005. High resolution satellite imaging systems – overview. Photogrammetrie, Fernerkundung, Geoinformation, 6, 487–496.

    Google Scholar 

  • Kenyon, S., and Forsberg, R., 2002. Arctic gravity project – a status. In Sideris, M. (ed.), Gravity, Geoid and Geodynamics 2000, International Association of Geodesy Symposia 123. Berlin/Heidelberg: Springer, pp. 391–395.

    Google Scholar 

  • King, M. A., Padman, L., Nicholls, K., Clarke, P. J., Gudmundsson, G. H., Kulessa, B., and Shepherd, A., 2011. Ocean tides in the Weddell Sea: new observations on the Filchner-Ronne and Larsen C ice shelves and model validation. Journal of Geophysical Research, Oceans, 116(C6), 2156–2202, doi:10.1029/2011JC006949.

    Google Scholar 

  • Korth, W., Perlt, J., Dach, R., and Dietrich, R., 1996. Repeated observations of ice surface heights near Schirmacher Oasis for ice mass balance studies. In Dietrich, R. (ed.), The Geodetic Antarctic Project GAP95 – German Contributions to the SCAR 95 Epoch Campaign. München: Verlag der Bayerischen Akademie der Wissenschaften. Deutsche Geodätische Kommission, Reihe B, Vol. 304, pp. 137–141.

    Google Scholar 

  • Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M., 2007. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3317–3341, doi:10.1109/TGRS.2007.900693.

    Article  Google Scholar 

  • Larsen, C., Motyka, R., Freymueller, J., Echelmeyer, K., and Ivins, E., 2005. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth and Planetary Science Letters, 237(3–4), 548–560, doi:10.1016/j.epsl.2005.06.032.

    Article  Google Scholar 

  • Lewis, J. P. 1995. Fast Template Matching. Vision Interface 95, Canadian Image Processing and Pattern Recognition Society, Quebec City, May 15–19, 1995, pp. 120–123.

    Google Scholar 

  • Loveland, T. R., and Dwyer, J. L., 2012. Landsat: building a strong future. Remote Sensing of Environment, 122, 22–29, doi:10.1016/j.rse.2011.09.022.

    Article  Google Scholar 

  • Lythe, M. B., Vaughan, D. G., and BEDMAP Consortium, 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 106(B6), 11,335–11,351.

    Article  Google Scholar 

  • Mäkinen, J., Amalvict, M., Shibuya, K., and Fukuda, Y., 2007. Absolute gravimetry in Antarctica: status and prospects. Journal of Geodynamics, 43, 339–357, doi:10.1016/j.jog.2006.08.002.

    Article  Google Scholar 

  • Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., and Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142, doi:10.1038/364138a0.

    Article  Google Scholar 

  • Meier, S. 1970. Beiträge zur Refraktion in hohen Breiten. Geodätisch-Geophysikalische Veröffentlichungen, Reihe III, 17. Berlin: Nationalkomitee für Geodäsie und Geophysik, Akademie der Wissenschaften der DDR.

    Google Scholar 

  • Meier, S., Dreßler, K., Eger, R., and Dietrich, R. 1976. Geodätisch-Glaziologische Arbeiten am Hays-Gletscher, Enderby-Land, während der 17. Sowjetischen Antarktisexpedition 1972. Geodätisch-Geophysikalische Veröffentlichungen, Reihe III, 37. Berlin: Nationalkomitee für Geodäsie und Geophysik, Akademie der Wissenschaften der DDR.

    Google Scholar 

  • Metzler, B., and Pail, R., 2005. GOCE data processing: the spherical cap regularization approach. Studia Geophysica et Geodaetica, 49(4), 441–462, doi:10.1007/s11200-005-0021-5.

    Article  Google Scholar 

  • Möller, D., and Gerdau, H., 1981. Geodetic Surveying on the Filchner/Ronne Ice Shelf and in the Atka Bay 1979/80. Polarforschung, 51(1), 43–53. hdl.handle.net/10013/epic.29496.d001.

    Google Scholar 

  • Möller, D., and Ritter, B., 1988. Glacial geodetic contributions to the mass balance and dynamics of ice shelves. Annals of Glaciology, 11, 89–94.

    Google Scholar 

  • Nielsen, J. M., Forsberg, R., and Strykowski, G., 2014. Measured and modelled absolute gravity changes in Greenland. Journal of Geodynamics, 73, 53–59, doi:10.1016/j.jog.2013.09.003.

    Article  Google Scholar 

  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. 2008. An earth gravitational model to degree 2160: EGM2008. Geophysical Research Abstracts, 10, EGU2008-A-01891.

    Google Scholar 

  • Pritchard, H. D., Arthern, R. J., Vaughan, D. G., and Edwards, L. A., 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–975.

    Article  Google Scholar 

  • Rémy, F., Shaeffer, P., and Legrésy, B., 1999. Ice flow physical processes derived from the ERS-1 high-resolution map of the Antarctica and Greenland ice sheets. Geophysical Journal International, 139(3), 645–656.

    Article  Google Scholar 

  • Richter, A., Popov, S. V., Fritsche, M., Lukin, V. V., Matveev, A. Y., Ekaykin, A. A., Lipenkov, V. Y., Fedorov, D. V., Eberlein, L., Schröder, L., Ewert, H., Horwath, M., and Dietrich, R., 2014. Height changes over subglacial Lake Vostok, East Antarctica: insights from GNSS observations. Journal of Geophysical Research, Earth Surface, 119(11), 2460–2480, doi:10.1002/2014JF003228.

    Article  Google Scholar 

  • Rignot, E. J., 1998. Radar interferometry detection of hinge-line migration on Rutford Ice Stream and Carlson Inlet, Antarctica. Annals of Glaciology, 27, 25–32.

    Google Scholar 

  • Rignot, E., Padman, L., MacAyeal, D. R., and Schmeltz, M., 2000. Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: comparison with tide model prediction. Journal of Geophysical Research, 105(C8), 19,615–19,630, doi:10.1029/1999JC000011.

    Article  Google Scholar 

  • Roth, A. 2003. TerraSAR-X: a new perspective for scientific use of high-resolution spaceborne SAR data. In 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 2003, pp. 4–7. doi:10.1109/DFUA.2003.1219947.

    Google Scholar 

  • Rudenko, S., Dettmering, D., Esselborn, S., Schöne, T., Förste, C., Lemoine, J.-M., Ablain, M., Alexandre, D., and Neumayer, K.-H., 2014. Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends. Advances in Space Research, 54(1), 92–118, doi:10.1016/j.asr.2014.03.010.

    Article  Google Scholar 

  • Rülke, A., Dietrich, R., Capra, A., Dong Chen, E., Cisak, J., Eiken, T., Fox, A., Hothem, L. D., Johnston, G., Malaimani, E. C., Matveev, A. J., Milinevsky, G., Schenke, H.-W., Shibuya, K., Sjöberg, L. E., Zakrajsek, A., Fritsche, M., Groh, A., Knöfel, C., and Scheinert, M. 2015. The Antarctic regional GPS network densification – status and results. In International Association of Geodesy Symposia (Proceedings IAG General Assembly, Potsdam 2013). Berlin/Heidelberg: Springer (accepted for publication).

    Google Scholar 

  • Rummel, R., Horwath, M., Yi, W., Albertella, A., Bosch, W., and Haagmans, R., 2011. GOCE, satellite gravimetry and Antarctic mass transports. Surveys in Geophysics, 32(4–5), 643–657.

    Article  Google Scholar 

  • Sasgen, I., van den Broeke, M., Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B., 2012. Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333, 293–303, doi:10.1016/j.epsl.2012.03.033.

    Article  Google Scholar 

  • Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A., 1992. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sensing of Environment, 42(3), 177–186, doi:10.1016/0034-4257(92)90101-O.

    Article  Google Scholar 

  • Scheinert, M., 2005. The Antarctic Geoid project: status report and next activities. In Jekeli, C., Bastos, L., and Fernandes, J. (eds.), Gravity, Geoid and Space Missions, International Association of Geodesy Symposia 129. Berlin/Heidelberg: Springer, pp. 137–142, doi:10.1007/3-540-26932-0 24.

    Chapter  Google Scholar 

  • Scheinert, M., 2012. Progress and prospects of the Antarctic Geoid project (commission project 2.4). In Kenyon, S., Pacino, M., and Marti, U. (eds.), Geodesy for Planet Earth, International Association of Geodesy Symposia 136. Berlin/Heidelberg: Springer, pp. 451–456, doi:10.1007/978-3-642-20338-1_54.

    Google Scholar 

  • Scheinert, M., Müller, J., Dietrich, R., Damaske, D., and Damm, V., 2008. Regional geoid determination in Antarctica utilizing airborne gravity and topography data. Journal of Geodesy, 82(7), 403–414, doi:10.1007/s00190-007-0189-2.

    Article  Google Scholar 

  • Scheinert, M., Petrovic, S., Heyde, I., Barthelmes, F., Schwabe, J., Förste, C., and Eberlein, L. 2013., From Germany to Antarctica: airborne geodesy and geophysics and the utilization of the research aircraft HALO, abstract G13C-05 presented at 2013 Fall Meeting, AGU, San Francisco, CA, December 9–13, 2013.

    Google Scholar 

  • Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D. D., Damiani, T. M., Young, D., Cochran, J. R., Richter, T. D., 2015. New antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in antarctica (submitted to Geophysical Research Letters).

    Google Scholar 

  • Schmidt, T., and Mellinger, G. 1966. Bestimmung von Eisbewegungen am Rand des antarktischen Inlandeises. Geodätisch-Geophysikalische Veröffentlichungen, Reihe III, 4. Berlin: Nationalkomitee für Geodäsie und Geophysik, Akademie der Wissenschaften der DDR.

    Google Scholar 

  • Schwabe, J., and Scheinert, M., 2014. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data. Journal of Geodesy, 88(9), 821–838, doi:10.1007/s00190-014-0724-x.

    Article  Google Scholar 

  • Schwabe, J., Ewert, H., Scheinert, M., and Dietrich, R., 2014. Regional geoid modeling in the area of subglacial Lake Vostok, Antarctica. Journal of Geodynamics, 75, 9–21, doi:10.1016/j.jog.2013.12.002.

    Article  Google Scholar 

  • Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sandberg Sorensen, L., Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg, W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J., 2012. A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 1183–1189, doi:10.1126/science.1228102.

    Article  Google Scholar 

  • Simons, M., and Rosen, P. A., 2007. Interferometric synthetic aperture radar geodesy. In Schubert, G. (ed.), Treatise on Geophysics. Amsterdam: Elsevier, pp. 391–446, doi:10.1016/B978-044452748-6.00059-6.

    Chapter  Google Scholar 

  • Sir Watts, A., 1992. International Law and the Antarctic Treaty System. Cambridge: Grotius Publications Ltd.

    Google Scholar 

  • Smalley, R., Jr., Dalziel, I. W. D., Bevis, M. G., Kendrick, E., Stamps, D. S., King, E. C., Taylor, F. W., Lauría, E., Zakrajsek, A., and Parra, H., 2007. Scotia arc kinematics from GPS geodesy. Geophysical Research Letters, 34(21), L21308, doi:10.1029/2007GL031699.

    Article  Google Scholar 

  • Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31(9), L09607, doi:10.1029/2004GL019920.

    Article  Google Scholar 

  • Tapley, B. D., Flechtner, F., Bettadpur, S. V., and Watkins, M. M. 2014. The GRACE Mission: Status and Future Activities, Abstract G23C-03, 2014 Fall Meeting, AGU, San Francisco, CA, December 15–19, 2014.

    Google Scholar 

  • Thomas, I., King, M., Bentley, M., Whitehouse, P., Penna, N., Williams, S., Riva, R., Lavallee, D., Clarke, P., King, E., Hindmarsh, R., and Koivula, H., 2011. Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophysical Research Letters, 38(22), L22302, doi:10.1029/2011GL049277.

    Article  Google Scholar 

  • Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T., 2013. Observations: cryosphere. In Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press, pp. 317–382.

    Google Scholar 

  • Velicogna, I., and Wahr, J., 2006. Measurements of time-variable gravity show mass loss in Antarctica. Science, 311(5768), 1754–1756.

    Article  Google Scholar 

  • Whitehouse, P. L., Bentley, M. J., Milne, G. A., King, M. A., and Thomas, I. D., 2012. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophysical Journal International, 190, 1464–1482, doi:10.1111/j.1365-246X.2012.05557.x.

    Article  Google Scholar 

  • Wingham, D. J., Ridout, A. J., Scharroo, R., Arthern, R. J., and Shum, C. K., 1998. Antarctic elevation change from 1992 to 1996. Science, 282(5388), 456–458.

    Article  Google Scholar 

  • Zebker, H. A., and Goldstein, R. M., 1986. Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research, 91(B5), 4993–4999, doi:10.1029/JB091iB05p04993.

    Article  Google Scholar 

  • Zitová, B., and Flusser, J., 2003. Image registration methods: a survey. Image and Vision Computing, 21(11), 977–1000, doi:10.1016/S0262-8856(03)00137-9.

    Article  Google Scholar 

  • Zumberge, J. H., 1964. Horizontal strain and absolute movement of the Ross Ice Shelf Between Ross Island and Roosevelt Island, Antarctica, 1958–1963. In Mellor, M. (ed.), Antarctic Snow and Ice Studies. Washington, DC: American Geophysical Union, pp. 65–81, doi:10.1029/AR002p0065.

    Google Scholar 

Web Links

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Scheinert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Scheinert, M., Horwath, M., Dietrich, R., Rosenau, R., Knöfel, C. (2014). Geodesy in Polar Regions. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics