Skip to main content

Earth Rotation, Excitation, Core

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 221 Accesses

Definition

Earth Rotation, Excitation, Core. Temporal variations in the amplitude and orientation of the rotation vector of the solid Earth, which comprises the mantle and crust, excited by processes originating in the Earth’s core.

Introduction

The Earth’s magnetic field is generated and maintained by convective flows in the electrically conducting fluid outer core (FOC). Interactions between these flows and the mantle at the core-mantle boundary (CMB) and the solid inner core (SIC) at the inner core boundary (ICB) lead to transfer of angular momentum between the FOC, SIC, and mantle. Within each of these three interior regions, a change in angular momentum entrains a change in the rotation vector. Observations of Earth rotation are made at the Earth’s surface in a reference frame fixed to the crust. The latter is rotating with the mantle as a single body, so Earth rotation variations refer then to variations in mantle rotation. Thus, through torques between the mantle and core,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Adhikari, S., and Ivins, E. R., 2016. Climate-driven polar motion: 2003–2015. Science Advances, 2, e1501693.

    Google Scholar 

  • Buffett, B. A., 1996. Gravitational oscillations in the length of the day. Geophysical Research Letters, 23, 2279–2282.

    Google Scholar 

  • Buffett, B. A., 2014. Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature, 507, 484–487.

    Google Scholar 

  • Buffett, B. A., 2015. Chapter 8. Core-mantle interactions. In Schubert, G., and Olson, P. (eds.), Treatise on Geophysics. Amsterdam: Elsevier, Vol. 8, pp. 213–224.

    Google Scholar 

  • Dumberry, M., 2008. Gravitational torque on the inner core and decadal polar motion. Geophysical Journal International, 172, 903–920.

    Google Scholar 

  • Dumberry, M., and Bloxham, J., 2002. Inner core tilt and polar motion. Geophysical Journal International, 151, 377–392.

    Google Scholar 

  • Dumberry, M., and Bloxham, J., 2006. Azimuthal flows in the Earth’s core and changes in length of day at millennial timescales. Geophysical Journal International, 165, 32–46.

    Google Scholar 

  • Gillet, N., Jault, D., Canet, E., and Fournier, A., 2010. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, 465, 74–77.

    Google Scholar 

  • Glauert, H., 1915. The rotation of the Earth. Monthy Notices of the Royal Astronomical Society, 75, 489–495.

    Google Scholar 

  • Greff-Lefftz, M., and Legros, H., 1995. Core mantle coupling and polar motion. Physics of the Earth and Planetary Interiors, 91, 273–283.

    Google Scholar 

  • Greiner-Mai, H., and Barthelmes, F., 2001. Relative wobble of the Earth’s inner core derived from polar motion and associated gravity variations. Geophysical Journal International, 144, 27–36.

    Google Scholar 

  • Gross, R. S., 2015. Chapter 9. Earth rotation variations – long period. In Schubert, G. (ed.), Treatise on Geophysics. Oxford: Elsevier, Vol. 3, pp. 215–261.

    Google Scholar 

  • Hide, R., 1969. Interaction between the Earth’s liquid core and solid mantle. Nature, 222, 1055–1056.

    Google Scholar 

  • Hide, R., Boggs, D. H., Dickey, J. O., Dong, D., Gross, R. S., and Jackson, A., 1996. Topographic core-mantle coupling and polar motion on decadal time-scales. Geophysical Journal International, 125, 599–607.

    Google Scholar 

  • Hide, R., Boggs, D. H., and Dickey, J. O., 2000. Angular momentum fluctuations within the Earth’s liquid core and torsional oscillations of the core-mantle system. Geophysical Journal International, 143, 777–786.

    Google Scholar 

  • Holme, R., 2015. Chapter 4. Large-scale flow in the core. In Schubert, G., and Olson, P. (eds.), Treatise on Geophysics. Amsterdam: Elsevier, Vol. 8, pp. 91–113.

    Google Scholar 

  • Holme, R., and de Viron, O., 2013. Characterization and implications of intradecadal variations in length of day. Nature, 499, 202–204.

    Google Scholar 

  • Hulot, G., Le Huy, M., and Le Mouël, J. L., 1996. Influence of core flows on the decade variations of the polar motion. Geophysical & Atrophysical Fluid Dynamics, 82, 35–67.

    Google Scholar 

  • Jackson, A., 1997. Time-dependency of tangentially geostrophic core surface motions. Physics of the Earth and Planetary Interiors, 103, 293–311.

    Google Scholar 

  • Jault, D., Gire, C., and Le Mouël, J. L., 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353–356.

    Google Scholar 

  • Markowitz, W., 1960. Latitude and longitude and the secular motion of the pole. In Runcorn, S. K. (ed.), Methods and Techniques in Geophysics. London: Interscience Publishers, pp. 325–361.

    Google Scholar 

  • Mitrovica, J. X., Hay, C. C., Morrow, E., Kopp, R. E., Dumberry, M., and Stanley, S., 2015. Reconciling past changes in Earth’s rotation with 20th century global sea-level rise: resolving Munk’s enigma. Science Advances, 1, e1500679.

    Google Scholar 

  • More, C., and Dumberry, M., 2018. Convectively driven decadal zonal accelerations in Earth’s fluid core. Geophysical Journal International, 213, 434–446.

    Google Scholar 

  • Mound, J. E., 2005. Electromagnetic torques in the core and resonant excitation of decadal polar motion. Geophysical Journal International, 160, 721–728.

    Google Scholar 

  • Munk, W. H., and Revelle, R., 1952. On the geophysical interpretation of irregularities in the rotation of the Earth. Monthly Notices of the Royal Astronomical Society, Geophysical, 6(Suppl 6), 331–347.

    Google Scholar 

  • Newcomb, S., 1882. Discussion and results of observations on transits of mercury, from 1677 to 1881. Astronomical Papers American Ephemeris, 1, 465.

    Google Scholar 

  • Pais, A., and Hulot, G., 2000. Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows. Physics of the Earth and Planetary Interiors, 118, 291–316.

    Google Scholar 

  • Rochester, M. G., 1960. Geomagnetic westward drift and irregularities in the Earth’s rotation. Philosophical Transactions of the Royal Society of London. Series A, 252, 531–555.

    Google Scholar 

  • Stephenson, F. R., Morrison, L. V., and Hohenkerk, C. Y., 2016. Measurement of the Earth’s rotation: 720 BC to AD 2015. Proceedings of the Royal Society A, 472, 20160404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Dumberry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dumberry, M. (2018). Earth Rotation, Excitation, Core. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02370-0

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics