Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Ability to Recognize Individuals

  • Catherine F. TalbotEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_1253-1



The ability to recognize individuals is a highly advantageous skill for social living species. Although not always clear, an important distinction in the literature is that between individual discrimination and individual recognition. Individual discrimination is the ability to differentiate one individual from all the rest, whereas individual recognition is the ability to differentiate each individual from every other individual and is the most precise form of recognition (Beecher 1989). This entry discusses the evidence for the recognition of conspecific individuals in nonhuman animals, specifically through the auditory and visual systems.


Studying nonhumans provides important insight into the evolution of human sociocognitive skills, such as individual recognition. As in human societies, most social species live in groups that are structured by kinship, dominance, and reproductive...


Face Recognition Inversion Effect Vervet Monkey Individual Recognition Holistic Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



I thank Sarah F. Brosnan and Darby Proctor for helpful feedback. CFT was funded by NSF GRFP (DGE-1051030).


  1. Adachi, I., & Hampton, R. R. (2011). Rhesus monkeys see who they hear: Spontaneous cross-modal memory for familiar conspecifics. PloS One, 6(8), e23345.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beecher, M. D. (1989). Signaling systems for individual recognition: An information theory approach. Animal Behaviour, 38(2), 248–261.CrossRefGoogle Scholar
  3. Beer, C. G. (1970). Individual recognition of voice and its development in birds. Proceedings of 15th International Orinthonological Congress, 339–359.Google Scholar
  4. Bird, C. D., & Emery, N. J. (2008). Using video playback to investigate the social preferences of rooks, Corvus frugilegus. Animal Behaviour, 76(3), 679–687.CrossRefGoogle Scholar
  5. Brown, S. D., & Dooling, R. J. (1992). Perception of conspecific faces by budgerigars (Melopsittacus undulatus): I. Natural faces. Journal of Comparative Psychology, 106(3), 203–216.CrossRefPubMedGoogle Scholar
  6. Brown, S. D., & Dooling, R. J. (1993). Perception of conspecific faces by budgerigars (Melopsittacus undulatus): II. Synthetic models. Journal of Comparative Psychology, 107(1), 48–60.CrossRefPubMedGoogle Scholar
  7. Bruce, V., & Young, A. (1998). In the eye of the beholder: The science of face perception. Oxford: Oxford University Press.Google Scholar
  8. Bshary, R. (2011). Machiavellian intelligence in fishes. In C. Brown, J. Krause, & K. Laland (Eds.), Fish cognition and behavior (pp. 277–297). Cambridge, MA: Wiley.CrossRefGoogle Scholar
  9. Byrne, R., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford: Clarendon.Google Scholar
  10. Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world. Chicago: University of Chicago Press.Google Scholar
  11. Emery, N. J., Seed, A. M., von Bayern, A. M., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society of London, Series B, 362, 489e505.Google Scholar
  12. Humphrey, N. K. (1974). Species and individuals in the perceptual world of monkeys. Perception, 3, 105–114.CrossRefPubMedGoogle Scholar
  13. Kohda, M., Jordan, L. A., Hotta, T., Kosaka, N., Karino, K., Tanaka, H., … & Takeyama, T. (2015). Facial recognition in a group-living Cichlid Fish. PloS one, 10(11), e0142552.Google Scholar
  14. Leopold, D. A., & Rhodes, G. (2010). A comparative view of face perception. Journal of Comparative Psychology, 124(3), 233–251.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Micheletta, J., Whitehouse, J., Parr, L. A., Marshman, P., Engelhardt, A., & Waller, B. M. (2015). Familiar and unfamiliar face recognition in crested macaques (Macaca nigra). Royal Society Open Science, 2(5), 150109.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Parr, L. A. (2011). The evolution of face processing in primates. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1571), 1764–1777.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Pascalis, O., & Kelly, D. J. (2009). The origins of face processing in humans: Phylogeny and ontogeny. Perspectives on Psychological Science, 4(2), 200–209.CrossRefPubMedGoogle Scholar
  18. Rendall, D., Rodman, P. S., & Emond, R. E. (1996). Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Animal Behaviour, 56, 1007–1015.CrossRefGoogle Scholar
  19. Sangrigoli, S., & De Schonen, S. (2004). Recognition of own-race and other-race faces by three-month-old infants. Journal of Child Psychology and Psychiatry, 45(7), 1219–1227.CrossRefPubMedGoogle Scholar
  20. Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A. G., & De Schonen, S. (2005). Reversibility of the other-race effect in face recognition during childhood. Psychological Science, 16, 440–444.PubMedGoogle Scholar
  21. Sheehan, M. J., & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science, 334(6060), 1272–1275.CrossRefPubMedGoogle Scholar
  22. Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M., & Wallis, G. (2010). A species of reef fish that uses ultraviolet patterns for covert face recognition. Current Biology, 20(5), 407–410.CrossRefPubMedGoogle Scholar
  23. Smuts, B. B., Cheney, D. L., Seyfarth, R. M., Wrangham, R. W., & Struhsaker, T. T. (1987). Primate societies. Chicago: University of Chicago Press.Google Scholar
  24. Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105, 394–398.CrossRefGoogle Scholar
  25. Talbot, C. F., Mayo, L., Stoinski, T., & Brosnan, S. F. (2015). Face discriminations by orangutans (Pongo spp.) vary as a function of familiarity. Evolutionary Psychological Science, 1, 172–182.CrossRefGoogle Scholar
  26. Talbot, C. F., Leverett, K. L., & Brosnan, S. F. (2016). Capuchins recognize familiar faces. Animal Behaviour, 122, 37–45.Google Scholar
  27. Tate, A. J., Fischer, H., Leigh, A. E., & Kendrick, K. M. (2006). Behavioural and neurophysiological evidence for face identity and face emotion processing in animals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361(1476), 2155–2172.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Thompson, R. K. R. (1995). Natural and relational concepts in animals. In H. Roitblat & J. A. Meyer (Eds.), Comparative approaches to cognitive science (pp. 175–224). Cambridge, MA: Bradford/MIT Press.Google Scholar
  29. Tomonaga, M., Itakura, S., & Matsuzawa, T. (1993). Superiority of conspecific faces and reduced inversion effect in face perception by a chimpanzee. Folia Primatologica, 61(2), 110–114.Google Scholar
  30. Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology, 79(4), 471–491.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Psychology & Language Research CenterGeorgia State UniversityAtlantaUSA
  2. 2.California National Primate Research CenterUniversity of CaliforniaDavisUSA