Encyclopedia of Animal Cognition and Behavior

Living Edition
| Editors: Jennifer Vonk, Todd Shackelford


  • Naomi D. HarveyEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-47829-6_532-1



The stage in human and nonhuman animal development through which a juvenile becomes a reproductively and behaviorally mature adult.


Adolescence is a developmental stage in an animal’s life history that is characterized by both reproductive and behavioral maturation. The terms “puberty” and “adolescence” are often used interchangeably as synonyms. However, it is more accurate to consider adolescence as the period in which an animal transitions into an adult that is reproductively, socially, and cognitively mature (Sisk and Foster 2004), encompassing puberty, which more precisely is the process through which an individual becomes reproductively mature. Specialists in this area argue that reproductive (gonadal) development and behavioral development are distinct processes, driven by separate neurobiological mechanisms, that are linked by interactions between gonadal steroid hormones and the nervous system (Sisk and Foster 2004).

This is a preview of subscription content, log in to check access.


  1. Ball, G. F., & Wade, J. (2013). The value of comparative approaches to our understanding of puberty as illustrated by investigations in birds and reptiles. Hormones and Behavior, 64(2), 211–214.  https://doi.org/10.1016/j.yhbeh.2013.05.002.CrossRefPubMedGoogle Scholar
  2. Belsky, J., Houts, R. M., & Fearon, R. M. P. (2010). Infant attachment security and the timing of puberty. Psychological Science, 21(9), 1195–1201.  https://doi.org/10.1177/0956797610379867.CrossRefPubMedGoogle Scholar
  3. Chaby, L. E., Cavigelli, S. A., White, A., Wang, K., & Braithwaite, V. A. (2013). Long-term changes in cognitive bias and coping response as a result of chronic unpredictable stress during adolescence. Frontiers in Human Neuroscience, 7, 328.  https://doi.org/10.3389/fnhum.2013.00328.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Clarke, H., Dhillo, W. S., & Jayasena, C. N. (2015). Comprehensive review on Kisspeptin and its role in reproductive disorders. Endocrinology and Metabolism (Seoul, Korea), 30(2), 124–141.  https://doi.org/10.3803/EnM.2015.30.2.124.CrossRefGoogle Scholar
  5. Crone, E. A. (2009). Executive functions in adolescence: Inferences from brain and behavior. Developmental Science, 12(6), 825–830.  https://doi.org/10.1111/j.1467-7687.2009.00918.x.CrossRefPubMedGoogle Scholar
  6. Delemarre-Van De Waal, H. A. (2002). Regulation of puberty. Best Practice and Research: Clinical Endocrinology and Metabolism, 16(1), 1–12.  https://doi.org/10.1053/beem.2001.0176.CrossRefPubMedGoogle Scholar
  7. Golub, M. S., Collman, G. W., Foster, P. M. D., Kimmel, C. A., Meyts, E. R.-D., Reiter, E. O., … Toppari, J. (2008). Pediatrics. Pediatrics. American Academy of Pediatrics.  https://doi.org/10.1542/peds.2007-1813f.CrossRefGoogle Scholar
  8. Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21(1), 69–85.  https://doi.org/10.1017/S0954579409000054.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Irwig, M. S., Fraley, G. S., Smith, J. T., Acohido, B. V., Popa, S. M., Cunningham, M. J., … Steiner, R. A. (2004). Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat. Neuroendocrinology, 80(4), 264–272.  https://doi.org/10.1159/000083140.CrossRefGoogle Scholar
  10. Lyss, P. J., Andersen, S. L., LeBlanc, C. J., & Teicher, M. H. (1999). Degree of neuronal activation following FG-7142 changes across regions during development. Brain Research. Developmental Brain Research, 116(2), 201–203.  https://doi.org/10.1016/S0165-3806(99)00069-3.CrossRefPubMedGoogle Scholar
  11. McCormick, C. M., & Mathews, I. Z. (2010). Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), 756–765.  https://doi.org/10.1016/j.pnpbp.2009.09.019.CrossRefPubMedGoogle Scholar
  12. Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35(2), 163–174. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15841674.CrossRefGoogle Scholar
  13. Paul, E. S., Harding, E. J., & Mendl, M. (2005). Measuring emotional processes in animals: The utility of a cognitive approach. Neuroscience & Biobehavioral Reviews, 29(3), 469–491.  https://doi.org/10.1016/J.NEUBIOREV.2005.01.002.CrossRefGoogle Scholar
  14. Pautassi, R. M., Myers, M., Spear, L. P., Molina, J. C., & Spear, N. E. (2008). Adolescent but not adult rats exhibit ethanol-mediated appetitive second-order conditioning. Alcoholism, Clinical and Experimental Research, 32(11), 2016–2027.  https://doi.org/10.1111/j.1530-0277.2008.00789.x.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Peper, J. S., & Dahl, R. E. (2013). The teenage brain: Surging hormones-brain-behavior interactions during puberty. Current Directions in Psychological Science, 22(2), 134–139.  https://doi.org/10.1177/0963721412473755.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Plant, T. M. (2015). Neuroendocrine control of the onset of puberty. Frontiers in Neuroendocrinology, 38, 73–88.  https://doi.org/10.1016/j.yfrne.2015.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Plant, T. M., & Zorub, D. S. (1982). The role of nongonadal restraint of gonadotropin secretion in the delay of the onset of puberty in the rhesus monkey (Macaca mulatta). Journal of Animal Science, 55, 43–55. Retrieved from http://jas.fass.org/content/55/Supplement_II/43.PubMedGoogle Scholar
  18. Romeo, R. D., Richardson, H. N., & Sisk, C. L. (2002). Puberty and the maturation of the male brain and sexual behavior: Recasting a behavioral potential. Neuroscience and Biobehavioral Reviews, 26(3), 381–391. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12034137.CrossRefGoogle Scholar
  19. Schulz, K. M., & Sisk, C. L. (2016). The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neuroscience & Biobehavioral Reviews, 70, 148–158.  https://doi.org/10.1016/j.neubiorev.2016.07.036.CrossRefGoogle Scholar
  20. Schulz, K. M., Richardson, H. N., Zehr, J. L., Osetek, A. J., Menard, T. A., & Sisk, C. L. (2004). Gonadal hormones masculinize and defeminize reproductive behaviors during puberty in the male Syrian hamster. Hormones and Behavior, 45(4), 242–249.  https://doi.org/10.1016/j.yhbeh.2003.12.007.CrossRefPubMedGoogle Scholar
  21. Schulz, K. M., Molenda-Figueira, H. A., & Sisk, C. L. (2009). Back to the future: The organizational-Activational hypothesis adapted to puberty and adolescence. Hormones and Behavior, 55(5), 597–604.  https://doi.org/10.1016/j.yhbeh.2009.03.010.Back.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shields, G. S., Moons, W. G., Tewell, C. A., & Yonelinas, A. P. (2016). The effect of negative affect on cognition: Anxiety, not anger, impairs executive function. Emotion (Washington, DC), 16(6), 792–797.  https://doi.org/10.1037/emo0000151.CrossRefGoogle Scholar
  23. Sisk, C. L., & Foster, D. L. (2004). The neural basis of puberty and adolescence. Nature Neuroscience, 7(10), 1040–1047.  https://doi.org/10.1038/nn1326.CrossRefPubMedGoogle Scholar
  24. Sisk, C. L., & Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26(3–4), 163–174.  https://doi.org/10.1016/j.yfrne.2005.10.003.CrossRefPubMedGoogle Scholar
  25. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24(4), 417–463. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10817843.CrossRefGoogle Scholar
  26. Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 87–97.  https://doi.org/10.1017/S0954579409000066.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 69–74.  https://doi.org/10.1016/j.tics.2004.12.005.CrossRefPubMedGoogle Scholar
  28. Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21(1), 47–68.  https://doi.org/10.1017/S0954579409000042.CrossRefPubMedPubMedCentralGoogle Scholar
  29. van Haaster, L. H., & de Rooij, D. G. (1993). Spermatogenesis is accelerated in the immature Djungarian and Chinese hamster and rat. Biology of Reproduction, 49(6), 1229–1235. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8286605.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Veterinary Medicine & ScienceThe University of NottinghamSutton BoningtonUK

Section editors and affiliations

  • Douglas Sellers
    • 1
  1. 1.Penn State Worthington ScrantonScrantonUSA