Skip to main content

Amine Precursors in Depressive Disorders and the Blood-Brain Barrier

  • Living reference work entry
  • First Online:
NeuroPsychopharmacotherapy

Abstract

Depression caused by either genetic factors or environmental stimulates such as chronic psychological or physiological stress, traumatic or sports-related brain injuries, neurodegenerative diseases, and/or substance abuse and drug dependence leads to serious neurological manifestation and affects mortality and morbidity since ages. Stress is one of the powerful stimulants to induce disruption of the blood-brain barrier (BBB). In all the above cases breakdown of the BBB occurs resulting in abnormal neuronal functions and precipitating brain pathology. Disruption of BBB could be one of the leading factors affecting thought processes and mental health leading to depression. Accordingly, depressive episodes often lead to suicide that is estimated to be around 40 k individuals per year in the USA. About 10–15% of these individuals were on antidepressant therapy at that time. These antidepressants adversely affect the BBB breakdown. Thus, although our knowledge on depression expanded in recent years, the biological mechanisms of depression and suitable treatment strategies are still obscure. In depressive episodes alterations in the metabolism of biogenic amines in the brain formed the basis of treatment with amine precursors in clinic. However, these treatments are only helping up to some extent in clinics, indicating the involvement of further agents beyond the amine mechanisms in depression. It appears that today’s view on depression is not only genetics and environmental but rather an integrative etiopathogenetic and biopsychological phenomena. In this review the potential role of amine precursors in depression is discussed in the light of recent development in relation to the new developing clinical strategies and mechanisms to treat depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aarsland D, Pahlhagen S, Ballard CG, et al. Depression in Parkinson disease -epidemiology, mechanisms, and management. Nat Rev Neurol. 2012;8:35–47.

    Article  CAS  Google Scholar 

  • Ahern GP. 5-HT and the immune system. Curr Opin Pharmacol. 2011;11(1):29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 1952.

    Google Scholar 

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: American Psychiatric Association; 1994.

    Google Scholar 

  • Andersen J, Aabro E, Gulmann N, et al. Anti-depressive treatment in Parkinson’s disease. A controlled trial of the effect of nortriptyline in patients with Parkinson's disease treated with L-DOPA. Acta Neurol Scand. 1980;62:210–9.

    Article  CAS  PubMed  Google Scholar 

  • Anderson KD, Alderson RF, Altar CA, DiStefano PS, Corcoran TL, Lindsay RM, Wiegand SJ. Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J Comp Neurol. 1995;357(2):296–317.

    Article  CAS  PubMed  Google Scholar 

  • Anisman H, et al. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J Psychiatry Neurosci. 2008;33:131–41.

    PubMed  PubMed Central  Google Scholar 

  • Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audet MC, Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci. 2013;7:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64:238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2013;4:48–63.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Hellier J, Dewey M, Romeo R, Ballard C, Baldwin R, Bentham P, Fox C, Holmes C, Katona C, Knapp M, Lawton C, Lindesay J, Livingston G, McCrae N, Moniz-Cook E, Murray J, Nurock S, Orrell M, O’Brien J, Poppe M, Thomas A, Walwyn R, Wilson K, Burns A. Sertraline or mirtazapine for depression in dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled trial. Lancet. 2011;378:403–11.

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M. Neurotrophic factors and their receptors. Curr Opin Cell Biol. 1995;7(2):148–55.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa Méndez S, Salazar-Juárez A. Mirtazapine attenuates anxiety- and depression-like behaviors in rats during cocaine withdrawal. J Psychopharmacol. 2019;33(5):589–605. https://doi.org/10.1177/0269881119840521. Epub 2019 Apr 23

    Article  CAS  PubMed  Google Scholar 

  • Barone P, Scarzella L, Marconi R, Antonini A, Morgante L, Bracco F, Zappia M, Musch B, Depression/Parkinson Italian Study Group. Pramipexole versus sertraline in the treatment of depression in Parkinson’s disease: a national multicenter parallel-group randomized study. J Neurol. 2006;253(5):601–7.

    Article  CAS  PubMed  Google Scholar 

  • Barone P, Poewe W, Albrecht S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9:573–80.

    Article  CAS  PubMed  Google Scholar 

  • Barr AM, Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression. Neurosci Biobehav Rev. 2005;29(4–5):675–706.

    Article  CAS  PubMed  Google Scholar 

  • Barr AM, Markou A, Phillips AG. A ‘crash’ course on psychostimulant withdrawal as a model of depression. Trends Pharmacol Sci. 2002;23(10):475–82.

    Article  CAS  PubMed  Google Scholar 

  • Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW, Maier SF. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience. 2003;121(4):847–53.

    Article  CAS  PubMed  Google Scholar 

  • Belmaker RH, Agam G. N Major depressive disorder. Engl J Med. 2008;358(1):55–68.

    Article  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Hornykiewicz O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr. 1961;73:787–8.

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P. Biochemical post-mortem findings in depressed patients. J Neural Transm. 1975;37:95–109. https://doi.org/10.1007/BF01663627.

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Danielczyk W, Neumayer E, Riederer P. The balance of biogenic amines as condition for normal behavior. J Neural Transm. 1972;33:163–78.

    Article  CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Linauer W, et al. L-deprenyl plus l-phenylalanine in the treatment of depression. J Neural Transm. 1984;59:81–7. https://doi.org/10.1007/BF01249880.

    Article  CAS  PubMed  Google Scholar 

  • Blazer DG. Depression in late life: review and commentary. J Gerontol A Biol Sci Med Sci. 2003;58(3):249–65.

    Article  PubMed  Google Scholar 

  • Bockaert J, Claeysen S, Bécamel C, Dumuis A, Marin P. Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326(2):553–72. https://doi.org/10.1007/s00441-006-0286-1. Epub 2006 Aug 1.

  • Bowers MB Jr. Cerebrospinal fluid 5-hydroxyindoles and behavior after L-tryptophan and pyridoxine administration to psychiatric patients. Neuropharmacology. 1970;9(6):599–604.

    Article  PubMed  Google Scholar 

  • Brent DA. Antidepressants and suicidality. Psychiatr Clin North Am. 2016;39(3):503–12.

    Article  PubMed  Google Scholar 

  • Brodie HKH, Sack R, Siever L. Clinical studies of L-5-hydroxytryptophan in depression. In: Barchas J, Usdin E, editors. Serotonin and behavior. New York: Academic; 1973. p. 549–59.

    Google Scholar 

  • Brooks N, Campsie L, Symington C, Beattie A, McKinlay W. The five year outcome of severe blunt head injury: a relative’s view. J Neurol Neurosurg Psychiatry. 1986;49(7):764–70. https://doi.org/10.1136/jnnp.49.7.764.

  • Bunney WE Jr, Murphy DL, Brodie HKH, et al. L-DOPA in depressed patients. Lancet. 1970;1:352.

    Article  PubMed  Google Scholar 

  • Bunney WE Jr, Brodie HK, Murphy DL, Goodwin FK. Studies of alpha-methyl-para-tyrosine, L-dopa, and L-tryptophan in depression and mania. Am J Psychiatry. 1971;127(7):872–81.

    Article  CAS  PubMed  Google Scholar 

  • Burton, R. (1621/2001). The anatomy of melancholy. New York: New York Review Books.

    Google Scholar 

  • Cacabelos R. Parkinson’s disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;18(3):551.

    Article  PubMed Central  CAS  Google Scholar 

  • Carman AJ, Ferguson R, Cantu R, Comstock RD, Dacks PA, DeKosky ST, et al. Expert consensus document: mind the gaps – advancing research into short-term and long-term neuropsychological outcomes of youth sports-related concussions. Nat Rev Neurol. 2015;11:230–44.

    Article  PubMed  Google Scholar 

  • Carroll BJ, Mowbray RM, Davies B. L-tryptophan in depression. Lancet. 1970;2(7676):776.

    Article  CAS  PubMed  Google Scholar 

  • Castanon N, Bluthé RM, Dantzer R. Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacology. 2001;154(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50(4):260–5.

    Article  CAS  PubMed  Google Scholar 

  • Coppen A. The biochemistry of affective disorders. Br J Psychiatry. 1967;113:1237–64.

    Article  CAS  PubMed  Google Scholar 

  • Coppen A, Shaw DM, Farrell JP. Potentiation of the antidepressive effect of a monoamine-oxidase inhibitor by tryptophan. Lancet. 1963;1:79–81.

    Article  CAS  PubMed  Google Scholar 

  • Coppen A, Shaw DM, Herzberg B, et al. Tryptophan in the treatment of depression. Lancet. 1967;2:1178–80.

    Article  CAS  PubMed  Google Scholar 

  • Coppen A, Whybrow PC, Noguera R, et al. The comparative antidepressant value of L-tryptophan and imipramine with and without attempted potentiation by liothyronine. Arch Gen Psychiatry. 1972;26:234–41.

    Article  CAS  PubMed  Google Scholar 

  • Couch Y, Anthony DC, Dolgov O, Revischin A, Festoff B, Santos AI, Steinbusch HW, Strekalova T. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav Immun. 2013;29:136–46.

    Article  CAS  PubMed  Google Scholar 

  • Coury A, Blaha CD, Atkinson LJ, Phillips AG. Cocaine induced changes in extracellular levels of striatal dopamine measured concurrently by microdialysis with HPLC-EC and chronoamperometry. Ann N Y Acad Sci. 1992;654:424–7.

    Article  CAS  PubMed  Google Scholar 

  • Curzon G. Influence of plasma tryptophan on brain 5HT synthesis and serotonergic activity. In: Haber B, Gabay S, Issidorides MR, Alivisatos SGA, editors. Serotonin. Advances in experimental medicine and Biology, vol. 133. Boston: Springer; 1981. https://doi.org/10.1007/978-1-4684-3860-4_11.

    Chapter  Google Scholar 

  • Davis JM. Theories of biological etiology of affective disorders. In: Pfeiffer CC, Smythies JR, editors. International review of neurobiology, vol. 12. New York: Academic; 1970. p. 145–75.

    Google Scholar 

  • Daws LC, Munn JL, Valdez MF, Frosto-Burke T, Hensler JG. Serotonin transporter function, but not expression, is dependent on brain-derived neurotrophic factor (BDNF): in vivo studies in BDNF-deficient mice. J Neurochem. 2007;101(3):641–51.

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75.

    Article  PubMed  CAS  Google Scholar 

  • Decq P, Gault N, Blandeau M, Kerdraon T, Berkal M, ElHelou A, et al. Long-term con- sequences of recurrent sports concussion. Acta Neurochir. 2016;158:289–300.

    Article  PubMed  Google Scholar 

  • DeRubeis RJ, Hollon SD, Amsterdam JD, Shelton RC, Young PR, Salomon RM, O’Reardon JP, Lovett ML, Gladis MM, Brown LL, Gallop R. Cognitive therapy vs. medications in the treatment of moderate to severe depression. Arch Gen Psychiatry. 2005;62:409–16.

    Article  PubMed  Google Scholar 

  • Deuschle M, Gilles M, Scharnholz B, Lederbogen F, Lang UE, Hellweg R. Changes of serum concentrations of brain-derived neurotrophic factor (BDNF) during treatment with venlafaxine and mirtazapine: role of medication and response to treatment. Pharmacopsychiatry. 2013;46(2):54–8.

    CAS  PubMed  Google Scholar 

  • Devos D, Dujardin K, Poirot I, Moreau C, Cottencin O, Thomas P, Destée A, Bordet R, Defebvre L. Comparison of desipramine and citalopram treatments for depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled study. Mov Disord. 2008;23(6):850–7.

    Article  PubMed  Google Scholar 

  • Dougherty KD, Dreyfus CF, Black IB. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis. 2000;7(6 Pt B):574–85.

    Article  CAS  PubMed  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  • Dudek KA, Dion-Albert L, Lebel M, LeClair K, Labrecque S, Tuck E, Ferrer Perez C, Golden SA, Tamminga C, Turecki G, Mechawar N, Russo SJ, Menard C. Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proc Natl Acad Sci U S A. 2020;117(6):3326–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60(8):804–15.

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science. 2012;338(6103):72–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elenkov IJ, Chrousos GP. Stress system--organization, physiology and immunoregulation. Neuroimmunomodulation. 2006;13(5–6):257–67.

    Article  CAS  PubMed  Google Scholar 

  • Estcourt MJ, Ramshaw LA, Ramsay AJ. Cytokine responses in virus infections: effects on pathogenesis, recovery and persistence. Curr Opin Microbiol. 1998;1(4):411–8.

    Article  CAS  PubMed  Google Scholar 

  • Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology. 2012;37(9):1397–416.

    Article  CAS  PubMed  Google Scholar 

  • Fann JR, Katon WJ, Uomoto JM, Esselman PC. Psychiatric disorders and functional disability in outpatients with traumatic brain injuries. Am J Psychiatry. 1995;152:1493–9.

    Article  CAS  PubMed  Google Scholar 

  • Fann JR, Bombardier CH, Temkin NR, Esselman P, Pelzer E, Keough M, Romero H, Dikmen S. Incidence, severity, and phenomenology of depression and anxiety in patients with moderate to severe traumatic brain injury. Psychosomatics. 2003;44:161.

    Google Scholar 

  • Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. J Neurotrauma. 2009;26:2383–402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernstrom JD. Hydrazine compounds were shown to be liver toxic. J Neural Transm. 1979;15:55.

    CAS  Google Scholar 

  • Fernstrom JD, Wurtman RJ. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science. 1971;173:149.

    Article  CAS  PubMed  Google Scholar 

  • Fernstrom JD, Wurtman RJ. Brain serotonin content: physiological regulation by plasma neutral amino acids. Science. 1972;178:414.

    Article  CAS  PubMed  Google Scholar 

  • Fibiger HC, Phillips AG. Mesocorticolimbic dopamine systems and reward. Ann N Y Acad Sci. 1988;537:206–15.

    Article  CAS  PubMed  Google Scholar 

  • Freud, S. (1917/1957). Mourning and melancholia. In J. Strachey (Ed. & Trans.), Standard edition of the complete works of Sigmund Freud (Vol. 14, pp. 237–258). London: Hogarth Press.

    Google Scholar 

  • Fuxe K, Butcher LL, Engel J. DL-5-Hydroxytryptophan-induced changes in central monoamine neurons after peripheral decarboxylase inhibition. J Pharm Pharmacol. 1971;23:420–4.

    Article  CAS  PubMed  Google Scholar 

  • Galts CPC, Bettio LEB, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev. 2019;102:56–84.

    Article  PubMed  Google Scholar 

  • Gayford JJ, Parker AL, Phillips EM, et al. Whole blood 5-hydroxy-tryptamine during treatment of endogenous depressive illness. Br J Psychiatry. 1973;122:597–8.

    Article  CAS  PubMed  Google Scholar 

  • Giannini AJ, Billett W. Bromocriptine-desipramine protocol in treatment of cocaine addiction. J Clin Pharmacol. 1987;27(8):549–54.

    Article  CAS  PubMed  Google Scholar 

  • Glassman AH, Platman SR. Potentiation of a monoamine oxidase inhibitor by tryptophan. J Psychiatr Res. 1969;7(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin FK, Murphy DL, Brodie HKH, et al. Levodopa: alterations in behavior. Clin Pharmacol Ther. 1971;12:383–96.

    Article  CAS  PubMed  Google Scholar 

  • Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008;13(7):717–28.

    Article  CAS  PubMed  Google Scholar 

  • GPDS Steering Committee. Factors impacting on quality of life in Parkinson’s disease: results from an international survey. Mov Disord. 2002;17:60–7.

    Article  Google Scholar 

  • Greenwood BN, Strong PV, Foley TE, Thompson RS, Fleshner M. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus. Neuroscience. 2007;144(4):1193–208.

    Article  CAS  PubMed  Google Scholar 

  • Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, Tseng GC, Lewis DA, Sibille E. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17(11):1130–42.

    Article  CAS  PubMed  Google Scholar 

  • Guskiewicz KM, Broglio SP. Acute sports- related traumatic brain injury and repetitive concussion. Handb Clin Neurol. 2015;127:157–72.

    Article  PubMed  Google Scholar 

  • Guskiewicz KM, Marshall SW, Bailes J, McCrea M, Harding HP, Matthews A, et al. Recurrent concussion and risk of depression in retired professional football players. Med Sci Sports Exerc. 2007;39:903–9.

    Article  PubMed  Google Scholar 

  • Gutierrez JLA, Alino JJL. Tryptophan and a MAOI (nialamide) in the treatment of depression. Int Pharmacopsychiatry. 1971;6:92–7.

    Article  Google Scholar 

  • Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:54–63.

    Article  CAS  Google Scholar 

  • Hasse J, Brown E. Integrating the monoamine, neurotrophin and cytokine hypothesis of depression – a central role of the serotonin transporter. Pharmacol Ther. 2015;147:1–11.

    Article  CAS  Google Scholar 

  • Hendricksen M, Thomas AJ, Ferrier IN, Ince P, O’Brien JT. Neuropathological study of the dorsal raphe nuclei in late-life depression and Alzheimer’s disease with and without depression. Am J Psychiatry. 2004;161:1096–102.

    Article  PubMed  Google Scholar 

  • Hensler JG. Serotonergic modulation of the limbic system. Neurosci Biobehav Rev. 2006;30(2):203–14.

    Article  CAS  PubMed  Google Scholar 

  • Hibbard MR, Uysal S, Kepler K, Bogdany J, Silver J. Axis I psychopathology in individuals with traumatic brain injury. J Head Trauma Rehabil. 1998;13:24–39.

    Article  CAS  PubMed  Google Scholar 

  • Hippocrates. (1923–1931). Works of Hippocrates, Vol. I–IV. (Trans. W. H. S. Jones & E. T. Withington). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med. 2008;358:453–63.

    Article  CAS  PubMed  Google Scholar 

  • Hollander E, Nunes E, DeCaria CM, et al. Dopaminergic sensitivity and cocaine abuse: response to apomorphine. Psychiatry Res. 1990;33(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  • Hollis SJ, Stevenson MR, McIntosh AS, Shores EA, Finch CF. Compliance with return-to-play regulations following concussion in Australian schoolboy and community rugby union players. Br J Sports Med. 2012;46:735–40.

    Article  PubMed  Google Scholar 

  • Holm L, Cassidy JD, Carroll LJ, Borg J, Neurotrauma Task Force on Mild Traumatic Brain Injury of the WHO Collaborating Centre. Summary of the WHO collaborating centre for neurotrauma task force on mild traumatic brain injury. J Rehabil Med. 2005;37:137–41.

    Article  PubMed  Google Scholar 

  • Horwitz AV, Wakefield JC, Lorenzo-Luaces L. History of depression. In: RJ DR, Strunk RD, editors. Oxford handbooks; 2016. https://doi.org/10.1093/oxfordhb/9780199973965.013.2. https://www.oxfordhandbooks.com/. Visited on Feb 02, 2021.

    Chapter  Google Scholar 

  • Hou R, Moss-Morris R, Peveler R, Mogg K, Bradley BP, Belli A. When a minor head injury results in enduring symptoms: a prospective investigation of risk factors for postconcussional syndrome after mild traumatic brain injury. J Neurol Neurosurg Psychiatry. 2012;83(2):217–23.

    Article  PubMed  Google Scholar 

  • Huang J, Pickel VM. Serotonin transporters (SERTs) within the rat nucleus of the solitary tract: subcellular distribution and relation to 5HT2A receptors. J Neurocytol. 2002;31(8–9):667–79.

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res. 2013;23(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Okayasu N, Nagatsu T. The relationship between depression and regional cerebral blood flow in Parkinson’s disease and the effect of selegiline treatment. Acta Neurol Scand. 2011;124(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara L, Brayne C. A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol Scand. 2006;113:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Salton SR. The role of neurotrophins in major depressive disorder. Transl Neurosci. 2013;4(1):46–58.

    Article  PubMed  Google Scholar 

  • Joëls M, Karst H, Krugers HJ, Lucassen PJ. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol. 2007;28(2–3):72–96.

    Article  PubMed  Google Scholar 

  • Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004;61:42–50.

    Article  PubMed  Google Scholar 

  • Jorge RE, Acion L, Burin DI, Robinson RG. Sertraline for preventing mood disorders following traumatic brain injury: a randomized clinical trial. JAMA Psychiat. 2016;73(10):1041–7.

    Article  Google Scholar 

  • Kambe T, Yasuda A, Kinoshita S, Shigeta M, Kinoshita T. Severity of depressive symptoms and Volume of Superior Temporal Gyrus in People who visit a memory clinic unaccompanied. Dement Geriatr Cogn Dis Extra. 2018;8(2):207–13. https://doi.org/10.1159/000489008. eCollection 2018 May-Aug

    Article  PubMed  PubMed Central  Google Scholar 

  • Kampman KM, Rukstalis M, Pettinati H, et al. The combination of phentermine and fenfluramine reduced cocaine withdrawal symptoms in an open trial. J Subst Abus Treat. 2000;19(1):77–9.

    Article  CAS  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  • Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):1068–72.

    Article  CAS  PubMed  Google Scholar 

  • Kekuda R, Leibach FH, Furesz TC, Smith CH, Ganapathy V. Polarized distribution of interleukin-1 receptors and their role in regulation of serotonin transporter in placenta. J Pharmacol Exp Ther. 2000;292(3):1032–41.

    CAS  PubMed  Google Scholar 

  • Kemp SPT, Hudson Z, Brooks JHM, Fuller CW. The epidemiology of head injuries in English professional rugby union. Clin J Sport Med. 2008;18:227–34.

    Article  PubMed  Google Scholar 

  • Kennedy JE, Lu LH, Reid MW, Leal FO, Cooper DB. Correlates of depression in U.S. military service members with a history of mild traumatic brain injury. Mil Med. 2019;184(3/4):148–54.

    Article  PubMed  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev. 2011;91(2):461–553.

    Article  CAS  PubMed  Google Scholar 

  • Kitahama K, Jouvet A, Fujimiya M, Nagatsu I. Arai R.5-Hydroxytryptophan (5-HTP) uptake and decarboxylation in the kitten brain. J Neural Transm (Vienna). 2002;109(5–6):683–9.

    Article  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci. 2007;26(5):1242–53.

    Article  PubMed  Google Scholar 

  • Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–53.

    Article  CAS  PubMed  Google Scholar 

  • Kline NS, Sacks W. Relief of depression within one day using an M.A.O. inhibitor and intravenous 5-HTP. Am J Psychiatry. 1963;120:274–5.

    Article  CAS  PubMed  Google Scholar 

  • Kline NS, Shah BK. Comparable therapeutic efficacy of tryptophan and imipramine: average therapeutic ratings versus “true” equivalence: an important difference. Curr Ther Res. 1973;15:484–7.

    CAS  PubMed  Google Scholar 

  • Kline NS, Sacks W, Simpson GM. Further studies on one day treatment of depression with 5-HTP. Am J Psychiatry. 1964;121:379–81.

    Article  CAS  PubMed  Google Scholar 

  • Knott P, Curzon G. Free tryptophan in plasma and brain tryptophan metabolism. Nature. 1972;239:452–3. https://doi.org/10.1038/239452a0.

    Article  CAS  PubMed  Google Scholar 

  • Koh JO, Cassidy JD, Watkinson EJ. Incidence of concussion in contact sports: a systematic review of the evidence. Brain Inj. 2003;17:901–17.

    Article  PubMed  Google Scholar 

  • Kohman RA, Rhodes JS. Neurogenesis, inflammation and behavior. Brain Behav Immun. 2013;27(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  • Kontos AP, Covassin T, Elbin RJ, Parker T. Depression and neurocognitive performance after concussion among male and female high school and collegiate athletes. Arch Phys Med Rehabil. 2012;93:1751–6.

    Article  PubMed  Google Scholar 

  • Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS. Nuclear factor kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A. 2010;107:2669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF, Caine SB, Parsons L, Markou A, Weiss F. Opponent process model and psychostimulant addiction. Pharmacol Biochem Behav. 1997;57(3):513–21.

    Article  CAS  PubMed  Google Scholar 

  • Kosten TR, Markou A, Koob GF. Depression and stimulant dependence: neurobiology and pharmacotherapy. J Nerv Ment Dis. 1998;186(12):737–45.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamberti C, Ipponi A, Bartolini A, Schunack W, Malmberg-Aiello P. Antidepressant-like effects of endogenous histamine and of two histamine H1 receptor agonists in the mouse forced swim test. Br J Pharmacol. 1998;123(7):1331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7(4):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Kim H, Park SH, Kim YK. Decreased plasma BDNF level in depressive patients. J Affect Disord. 2007;101(1–3):239–44.

    Article  CAS  PubMed  Google Scholar 

  • Leentjens AF, Dujardin K, Marsh L, et al. Symptomatology and markers of anxiety disorders in Parkinson's disease: a cross-sectional study. Mov Disord. 2011;26:484–92.

    Article  PubMed  Google Scholar 

  • Lehman EJ, Hein MJ, Baron SL, Gersic CM. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79:1970–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann J. TRYPTOPHAN MALABSORPTION IN LEVODOPA-TREATED PARKINSONIAN PATIENTS. Effect of tryptophan on mental disturbances. Acta Med Scand. 1973;194(3):181–9. https://doi.org/10.1111/j.0954-6820.1973.tb19428.x.

    Article  CAS  PubMed  Google Scholar 

  • Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36:764–85.

    Article  CAS  PubMed  Google Scholar 

  • Lestage J, Verrier D, Palin K, Dantzer R. The enzyme indoleamine 2,3-dioxygenase is induced in the mouse brain in response to peripheral administration of lipopolysaccharide and superantigen. Brain Behav Immun. 2002;16(5):596–601.

    Article  CAS  PubMed  Google Scholar 

  • Levin H, Kraus MF. The frontal lobes and traumatic brain injury. J Neuropsychiatr Clin Neurosci. 1994;6:443–54.

    Article  CAS  Google Scholar 

  • Levine J, Barak Y, Chengappa KN, Rapoport A, Rebey M, Barak V. Cerebrospinal cytokine levels in patients with acute depression. Neuropsychobiology. 1999;40:171–6.

    Article  CAS  PubMed  Google Scholar 

  • Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron. 2008;59:399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieb K, Biersack L, Waschbisch A, Orlikowski S, Akundi RS, Candelario-Jalil E, Hüll M, Fiebich BL. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells. J Neurochem. 2005;93(3):549–59.

    Article  CAS  PubMed  Google Scholar 

  • Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS. The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J Chem Neuroanat. 2004;27(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  • Maes M. Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry. 1995;19(1):11–38.

    Article  CAS  Google Scholar 

  • Makdissi M. Sports related concussion – management in general practice. Aust Fam Physician. 2010;39:12–7.

    PubMed  Google Scholar 

  • Makdissi M, Davis G, McCrory P. Updated guidelines for the management of sports- related concussion in general practice. Aust Fam Physician. 2014;43:94–9.

    PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malison RT, Price LH, Berman R, et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry. 1998;44(11):1090–8.

    Article  CAS  PubMed  Google Scholar 

  • Mamounas LA, Altar CA, Blue ME, Kaplan DR, Tessarollo L, Lyons WE. BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain. J Neurosci. 2000;20(2):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh L. Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep. 2013;13:409–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33(1):73–83. https://doi.org/10.1038/sj.npp.1301571. Epub 2007 Sep 19.

  • Matsui H, Nishinaka K, Oda M, et al. Minor depression and brain perfusion images in Parkinson’s disease. Mov Disord. 2006;21:1169–74.

    Article  PubMed  Google Scholar 

  • Mattay VS, Callicott JH, Bertolino A, et al. Effects of dextroamphetamine on cognitive performance and cortical activation. NeuroImage. 2000;12(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  • Matussek N. L-DOPA in the treatment of depression. In: Vinar O, Votva Z, Bradley PB, editors. Advances in neuropharmacology. Amsterdam: North-Holland Publishing Co; 1971. p. 111–9.

    Google Scholar 

  • Mayberg HS. Frontal lobe dysfunction in secondary depression. J Neuropsychiatr Clin Neurosci. 1994;6:428–42.

    Article  CAS  Google Scholar 

  • Mayberg HS, Solomon DH. Depression in Parkinson’s disease: a biochemical and organic viewpoint. Adv Neurol. 1995;65:49–60.

    CAS  PubMed  Google Scholar 

  • Mayberg HS, Starkstein SE, Sadzot B, et al. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson’s disease. Ann Neurol. 1990;28:57–64.

    Article  CAS  PubMed  Google Scholar 

  • McCrory P, Meeuwisse WH, Aubry M, Cantu RC, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport: the 4th international conference on concussion in sport, Zurich, November 2012. J Athl Train. 2013;48:554–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCrory P, Meeuwisse W, Dvorak J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport-the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838–847. https://doi.org/10.1136/bjsports-2017-097699. Epub 2017 Apr 26.

  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904.

    Article  PubMed  Google Scholar 

  • McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain J Neurol. 2013;136:43–64.

    Article  Google Scholar 

  • Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: insights from human and rodent studies. Neuroscience. 2016;321:138–62.

    Article  PubMed  CAS  Google Scholar 

  • Ménard C, Pfau ML, Hodes GE, Russo SJ. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42(1):62–80.

    Article  PubMed  CAS  Google Scholar 

  • Mendels J, Stinnett J. Biogenic amine metabolism, depression and mania. In: Mendels J, editor. Biological psychiatry. New York: Interscience-John Wiley & Sons Inc; 1973. p. 99–131.

    Google Scholar 

  • Mendels J, Stinnett JL, Burns D, Frazer A. Amine precursors and depression. Arch Gen Psychiatry. 1975;32(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  • Mendlewicz J, Youdim MBH. Antidepressant potentiation of 5-hydroxytryptophan by L-deprenil in affective illness. J Affect Disord. 1980;2(2):137–46. https://doi.org/10.1016/0165-0327(80)90013-0.

    Article  CAS  PubMed  Google Scholar 

  • Menza M, Dobkin RD, Marin H, et al. The impact of treatment of depression on quality of life, disability and relapse in patients with Parkinson’s disease. Mov Disord. 2009;24:1325–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merritt VC, Clark AL, Sorg SF, Evangelista ND, Werhane M, Bondi MW, Schiehser DM, Delano-Wood L. Apolipoprotein E ε4 Genotype Is Associated with Elevated Psychiatric Distress in Veterans with a History of Mild to Moderate Traumatic Brain Injury. J Neurotrauma. 2018;35(19):2272–2282. https://doi.org/10.1089/neu.2017.5372. Epub 2018 Jun 7.

  • Meyerson LR, Wennogle LP, Abel MS, Coupet J, Lippa AS, Rauh CE, Beer B. Human brain receptor alterations in suicide victims Pharmacol Biochem Behav 1982;17(1):159–63. https://doi.org/10.1016/0091-3057(82)90279-9.

  • Mills KA, Greene MC, Dezube R, Goodson C, Karmarkar T, Pontone GM. Efficacy and tolerability of antidepressants in Parkinson’s disease: A systematic review and network meta-analysis. Int J Geriatr Psychiatry. 2018;33(4):642–651. https://doi.org/10.1002/gps.4834. Epub 2017 Dec 13.

  • Mora F, Segovia G, Del Arco A, de Blas M, Garrido P. Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res. 2012;1476:71–85.

    Article  CAS  PubMed  Google Scholar 

  • Murphy DL, Brodie HK, Goodwin FK, Bunney WE Jr. Regular induction of hypomania by L-dopa in “bipolar” manic-depressive patients. Nature. 1971;229(5280):135–6. https://doi.org/10.1038/229135a0.

  • Murphy DL, Baker M, Kotin J, et al. Behavioral and metabolic effects of L-tryptophan in unipolar depressed patients. In: Barchas J, Usdin E, editors. Serotonin and behavior. New York: Academic Press Inc; 1973. p. 529–37.

    Google Scholar 

  • Murray JB. Depression in Parkinson’s disease. The Journal of Psychology. 1996;130(6):659–667. https://doi.org/10.1080/00223980.1996.9915039.

  • Náhunek K, Svestka J, Kamenická V, Rodová A. Preliminary clinical experience with L-dopa in endogenous depressions. Act Nerv Super (Praha). 1972;14(2):101–2.

    Google Scholar 

  • Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Chui HC, Law M, Toga AW, Zlokovic BV. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci. 1996;16:2365–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012;165(2):289–312. https://doi.org/10.1111/j.1476-5381.2011.01557.x.

  • Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P. SMARCA3, a chromatin remodeling factor, is required for p11-dependent antidepressant action. Cell. 2013;152(4):831–43. https://doi.org/10.1016/j.cell.2013.01.014.

  • Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery. 2005;57:128–34. [Discussion 128–34]

    Article  PubMed  Google Scholar 

  • Orgeta V, Tabet N, Nilorooshan R, Howard R. Efficacy of antidepressants for depression in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimer Disease. 2017;58:725–33.

    Article  CAS  Google Scholar 

  • Ozkizilcik A, Sharma A, Muresanu DF, Lafuente JV, Tian ZR, Patnaik R, Mössler H, Sharma HS. Timed release of cerebrolysin using drug-loaded titanate nanospheres reduces brain pathology and improves behavioral functions in Parkinson’s disease. Mol Neurobiol. 2018;55(1):359–69.

    Article  CAS  PubMed  Google Scholar 

  • Ozkizilcik A, Sharma A, Lafuente JV, Muresanu DF, Castellani RJ, Nozari A, Tian ZR, Mössler H, Sharma HS. Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson’s disease. Prog Brain Res. 2019;245:201–46.

    Article  PubMed  Google Scholar 

  • Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci. 2013;14(7):472–87.

    Article  CAS  PubMed  Google Scholar 

  • Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M. Neuronal histamine deficit in Alzheimer’s disease. Neuroscience. 1998;82(4):993–7.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM. Tryptophan transport through the blood-brain barrier: in vivo measurement of free and albumin-bound amino acid. Life Sci. 1979;25:1519.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH. Kinetic analyses of blood-brain barrier transport of amino acids. Biochem Biophys Acta. 1975;401:128.

    Article  CAS  PubMed  Google Scholar 

  • Pare CM. Potentiation of monoamine-oxidase inhibitors by tryptophan. Lancet. 1963;2(7306):527–8.

    Article  CAS  PubMed  Google Scholar 

  • Pare CM. Psychiatric complications of everyday drugs. Practitioner 1973;210(255):120–6.

    Google Scholar 

  • Pare CMB, Sandler M. A clinical and biochemical study of a trial of iproniazid in the treatment of depression. J Neurol Neurosurg Psychiatry. 1959;22:247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pary R, Scarff JR, Jijakli A, Tobias C, Lippmann S. A review of psychostimulants for adults with depression. Fed Pract. 2015;32(Suppl 3):30S–7S.

    PubMed  PubMed Central  Google Scholar 

  • Peña E, Mata M, López-Manzanares L, Kurtis M, Eimil M, Martínez-Castrillo JC, Navas I, Posada IJ, Prieto C, Ruíz-Huete C, Vela L, Venegas B. en nombre del grupo de trastornos del movimiento de la Asociación Madrileña de NeurologíaAntidepressants in Parkinson’s disease. Recommendations by the movement disorder study group of the Neurological Association of Madrid. Neurologia. 2016;19:S0213–4853(16)00055-4. https://doi.org/10.1016/j.nrl.2016.02.002.

  • Perry DC, Sturm VE, Peterson MJ, et al. Association of traumatic brain injury with subsequent neurological and psychiatric disease: a meta-analysis. J Neurosurg. 2016;124(2):511–26.

    Article  PubMed  Google Scholar 

  • Persson T, Roos BE. 5-Hydroxytryptophan for depression. Lancet. 1967;2:987–8.

    Article  CAS  PubMed  Google Scholar 

  • Persson T, Walinder J. L-DOPA in the treatment of depressive symptoms. Br J Psychiatry. 1971;119:277–8.

    Article  CAS  PubMed  Google Scholar 

  • Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A, Bah MJ, Dawood MY, Shah JD, Mark B, Kendall N, Smith MA, Saviolakis GA, Meyerhoff JL. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res. 2004;1025(1–2):10–20.

    Article  CAS  PubMed  Google Scholar 

  • Plata-Salaman CR. Brain cytokines and dis-ease. Acta Neuropsychiatr. 2002;14:262–78.

    Article  PubMed  Google Scholar 

  • Politis M, Niccolini F. Serotonin in Parkinson’s disease. Behav Brain Res. 2015;277:136–45.

    Article  CAS  PubMed  Google Scholar 

  • Pollin W, Cardon PV Jr, Kety SS. Effects of amino acid feedings in schizophrenic patients treated with iproniazid. Science. 1961;133(3446):104–5.

    Article  CAS  PubMed  Google Scholar 

  • Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2012;13:22–37.

    Article  CAS  Google Scholar 

  • Prange AJ Jr. The pharmacology and biochemistry of depression. Dis Nerv Syst. 1964;25:217–21.

    PubMed  Google Scholar 

  • Qian Z, Wu X, Qiao Y, Shi M, Liu Z, Ren W, Han J, Zheng Q. Downregulation of mGluR2/3 receptors during morphine withdrawal in rats impairs mGluR2/3- and NMDA receptor-dependent long-term depression in the nucleus accumbens. Neurosci Lett. 2019;690:76–82. https://doi.org/10.1016/j.neulet.2018.10.018. Epub 2018 Oct 11.

    Article  CAS  PubMed  Google Scholar 

  • Rakel RE. Depression. Prim Care. 1999;26(2):211–24.

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Ramamoorthy JD, Prasad PD, Bhat GK, Mahesh VB, Leibach FH, Ganapathy V. Regulation of the human serotonin transporter by interleukin-1 beta. Biochem Biophys Res Commun. 1995;216(2):560–7.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen K, Kendrick WT, Kogan JH, Aghajanian GK. A selective AMPA antagonist, LY293558, suppresses morphine withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology. 1996;15(5):497–505.

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AM, Shi L, Duman R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology. 2002;27(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  • Rawson KA, Gunstad J, Hughes J, Spitznagel MB, Potter V, Waechter D, Rosneck J. The METER: a brief, self-administered measure of health literacy. Gen Intern Med. 2010;25(1):67–71.

    Article  Google Scholar 

  • Rawson KS, Dixon D, Nowotny P, Ricci WM, Binder EF, Rodebaugh TL, Wendleton L, Doré P, Lenze EJ. Association of functional polymorphisms from brain-derived neurotrophic factor and serotonin-related genes with depressive symptoms after a medical stressor in older adults. PLoS One. 2015;10(3):e0120685. https://doi.org/10.1371/journal.pone.0120685. eCollection 2015. PMID: 25781924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read JR, Sharpe L, Modini M, Dear BF. Multimorbidity and depression: a systematic review and meta-analysis. J Affect Disord. 2017;221:36–46.

    Article  PubMed  Google Scholar 

  • Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord. 2008;23:183–9. quiz 313

    Article  PubMed  Google Scholar 

  • Richard IH, McDermott MP, Kurlan R, et al. A randomized, double-blind, placebo-controlled trial of antidepressants in Parkinson disease. Neurology. 2012;78:1229–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riederer P, Birkmayer W, Neumayer E. The tyrosine-tryptophan-diagram in a longtime study with depressed patients. J Neural Transm. 1973;34(1):31–48. https://doi.org/10.1007/BF01244825. PMID: 4714592

    Article  CAS  PubMed  Google Scholar 

  • Roiger T, Weidauer L, Kern B. A longitudinal pilot study of depressive symptoms in con-cussed and injured/nonconcussed National Collegiate Athletic Association Division I student-athletes. J Athl Train. 2015;50:256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenthal M, Christensen BK, Ross TP. Depression following traumatic brain injury. Arch Phys Med Rehabil. 1998;79:90–103.

    Article  CAS  PubMed  Google Scholar 

  • Ru Q, Xiong Q, Zhou M, Chen L, Tian X, Xiao H, Li C, Li Y. Withdrawal from chronic treatment with methamphetamine induces anxiety and depression-like behavior in mice. Psychiatry Res. 2019;271:476–83. https://doi.org/10.1016/j.psychres.2018.11.072. Epub 2018 Dec 3

    Article  CAS  PubMed  Google Scholar 

  • Ryan M, Eatmon CV, Slevin JT. Drug treatment strategies for depression in Parkinson disease.vExpert Opin Pharmacother. 2019;20(11):1351–1363. https://doi.org/10.1080/14656566.2019.1612877. Epub 2019 May 23.

  • Rybakowski JK, Suwalska A, Skibinska M, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Response to lithium prophylaxis: interaction between serotonin transporter and BDNF genes. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(6):820–3.

    Article  CAS  PubMed  Google Scholar 

  • Ryding E, Lindström M, Träskman-Bendz L. The role of dopamine and serotonin in suicidal behaviour and aggression. Prog Brain Res. 2008;172:307–15.

    Article  CAS  PubMed  Google Scholar 

  • Saha RN, Liu X, Pahan K. Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J NeuroImmune Pharmacol. 2006;1(3):212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano I. L-5-hydroxytryptophan(L-5-HTP) therapy in endogenous depression. 1. Munch Med Wochenschr. 1972;114(40):1713–6.

    CAS  PubMed  Google Scholar 

  • Sasahara I, Fujimura N, Nozawa Y, Furuhata Y, Sato H. The effect of histidine on mental fatigue and cognitive performance in subjects with high fatigue and sleep disruption scores. Physiol Behav. 2015;147:238–44.

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965a;112:509–22.

    Article  Google Scholar 

  • Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965b;122(5):509–22.

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ, Watson R, Draskoczy PR. Amphetamine withdrawal: depression and M.H.P.G. excretion. Lancet. 1971;2(7722):485–6.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EF, et al. Identification of the cortical neurons that mediate antidepressant responses. Cell. 2012;149:1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenhuber R, Gentilini M. Anxiety and depression after mild head injury: a case control study. J Neurol Neurosurg Psychiatry. 1988;51:722–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulteis G, Markou A, Cole M, Koob GF. Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci U S A. 1995;92(13):5880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seel RT, Kreutzer JS. Depression assessment after traumatic brain injury: an empirically based classification method. Arch Phys Med Rehabil. 2003;84:1621–8.

    Article  PubMed  Google Scholar 

  • Seel RT, Kreutzer JS, Rosenthal M, Hammond FM, Corrigan JD, Black K. Depression after traumatic brain injury: a National Institute on Disability and Rehabilitation Research Model Systems multicenter investigation. Arch Phys Med Rehabil. 2003;84(2):177–84. https://doi.org/10.1053/apmr.2003.50106.

  • Selye H. Stress and disease. Science. 1955;122(3171):625–31.

    Article  CAS  PubMed  Google Scholar 

  • Selye H. Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J. 1976;115(1):53–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P. Cellular and molecular basis for stress-induced depression. Mol Psychiatry. 2017;22(10):1440–7.

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Zhong P, Liu A, Yan Z, Greengard P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry. 2018;23(5):1113–9.

    Article  CAS  PubMed  Google Scholar 

  • Seppi K, Weintraub D, Coelho M, et al. The Movement Disorder Society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S42–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. Genes Brain Behav. 2019;18(3):e12533. https://doi.org/10.1111/gbb.12533. Epub 2018 Nov 26

    Article  CAS  PubMed  Google Scholar 

  • Shalev H, Serlin Y, Friedman A. Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc Psychiatry Neurol. 2009;2009:278531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma HS. Blood-brain barrier in Stress, Ph D Thesis, May 1982, Banaras Hindu University Press, Varanasi, India.

    Google Scholar 

  • Sharma HS. Pathophysiology of blood-brain barrier, brain edema and cell injury following hyperthermia: new role of heat shock protein, nitric oxide and carbon monoxide. an experimental study in the rat using light and electron microscopy. Acta Universitatis Upsaliensis. 1999;830:1–94. Sharma 2004a,b,c

    Google Scholar 

  • Sharma HS. Blood-brain and spinal cord barriers in stress. In: Sharma HS, Westman J, editors. The blood-spinal cord and brain barriers in health and disease. San Diego: Elsevier Academic Press; 2004a. p. 231–98.

    Chapter  Google Scholar 

  • Sharma HS. Histamine influences the blood-spinal cord and brain barriers following injuries to the central nervous system. In: Sharma HS, Westman J, editors. The blood-spinal cord and brain barriers in health and disease. San Diego: Elsevier Academic Press; 2004b. p. 159–90.

    Chapter  Google Scholar 

  • Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des. 2005;11(11):1353–89. Review.

    Google Scholar 

  • Sharma HS. Hyperthermia influences excitatory and inhibitory amino acid neurotransmitters in the central nervous system. An experimental study in the rat using behavioural, biochemical, pharmacological, and morphological approaches. J Neural Transm (Vienna). 2006;113(4):497–519.

    Article  CAS  Google Scholar 

  • Sharma HS. Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. Curr Pharm Des. 2007;13(18):1841–74.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS. Blood–central nervous system barriers: the gateway to neurodegeneration, neuroprotection and neuroregeneration. In: Lajtha A, Banik N, Ray SK, editors. Handbook of neurochemistry and molecular neurobiology: brain and spinal cord trauma. Berlin, Heidelberg, New York: Springer; 2009a. p. 363–457.

    Chapter  Google Scholar 

  • Sharma HS. New concepts of psychostimulants induced neurotoxicity. Int Rev Neurobiol. vol. 89. San Diego, USA, Oxford, UK: Academic Press. 2009b; pp. 1–435.

    Google Scholar 

  • Sharma HS. A combination of tumor necrosis factor-alpha and neuronal nitric oxide synthase antibodies applied topically over the traumatized spinal cord enhances neuroprotection and functional recovery in the rat. Ann N Y Acad Sci. 2010;1199:175–85.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS. New perspectives of central nervous system injury and neuroprotection. Int Rev Neurobiol. 2012;102:1–424. https://doi.org/10.1016/B978-0-12-386986-9.00013-2.

  • Sharma HS, Ali SF. Alterations in blood-brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci. 2006;1074:198–224.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali SF. Acute administration of 3,4-methylenedioxymethamphetamine induces profound hyperthermia, blood-brain barrier disruption, brain edema formation, and cell injury. Ann N Y Acad Sci. 2008;1139:242–58.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK. Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci. 1986a;72(1):61–76. https://doi.org/10.1016/0022-510x(86)90036-5.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology. 1986b;25(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK. Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res. 1987;424(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Dey PK. EEG changes following increased blood-brain barrier permeability under long-term immobilization stress in young rats. Neurosci Res. 1988;5(3):224–39.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Hoopes PJ. Hyperthermia induced pathophysiology of the central nervous system. Int J Hyperth. 2003;19(3):325–54.

    Article  CAS  Google Scholar 

  • Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res. 2007;162:459–78.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res. 2007;162:245–73.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Sjöquist PO, Ali SF. Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr Pharm Des. 2007;13(18):1903–23. https://doi.org/10.2174/138161207780858375.

  • Sharma HS, Sharma A. Breakdown of the blood-brain barrier in stress alters cognitive dysfunction and induces brain pathology: new perspectives for neuroprotective strategies. In: Ritsner MS, editor. Brain protection in schizophrenia, mood and cognitive disorders, vol. 3; 2010. p. 243–304. https://doi.org/10.1007/978-90-481-8553-5. Springer Science+Business Media B.V. 2010, New York, USA.

    Chapter  Google Scholar 

  • Sharma HS, Westman J. The blood-spinal cord and brain barriers in health and disease. San Diego: Academic; 2004. p. 1–617. (Release date: Nov. 9, 2003).

    Google Scholar 

  • Sharma HS, Olsson Y, Dey PK. Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience. 1990a;36(3):725–30. https://doi.org/10.1016/0306-4522(90)90014-u.

  • Sharma HS, Olsson Y, Dey PK. Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res. 1990b;517(1–2):215–23. https://doi.org/10.1016/0006-8993(90)91029-g.

  • Sharma HS, Cervós-Navarro J, Dey PK. Acute heat exposure causes cellular alteration in cerebral cortex of young rats. Neuroreport. 1991;2(3):155–8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Westman J, Nyberg F. Pathophysiology of brain edema and cell changes following hyperthermic brain injury. Prog Brain Res. 1998;115:351–412.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Patnaik R, Ray AK, Dey PK. Blood-central nervous system barriers in morphine dependence and withdrawal. In: Sharma HS, Westman J, editors. The blood-spinal cord and brain barriers in health and disease. San Diego: Elsevier Academic Press; 2004. p. 299–328.

    Chapter  Google Scholar 

  • Sharma HS, Lundstedt T, Boman A, Lek P, Seifert E, Wiklund L, Ali SF. A potent serotonin-modulating compound AP-267 attenuates morphine withdrawal-induced blood-brain barrier dysfunction in rats. Ann N Y Acad Sci. 2006a;1074:482–96. https://doi.org/10.1196/annals.1369.049.

  • Sharma HS, Duncan JA, Johanson CE. Whole-body hyperthermia in the rat disrupts the blood-cerebrospinal fluid barrier and induces brain edema. Acta Neurochir Suppl. 2006b;96:426–31. https://doi.org/10.1007/3-211-30714-1_88.

  • Sharma HS, Muresanu D, Sharma A, Patnaik R. Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. Int Rev Neurobiol. 2009;88:297–334. https://doi.org/10.1016/S0074-7742(09)88011-2.

  • Sharma HS, Zimmermann-Meinzingen S, Johanson CE. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci. 2010;1199:125–37.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Ali SF, Patnaik R, Zimmermann-Meinzingen S, Sharma A, Muresanu DF. Cerebrolysin attenuates heat shock protein (HSP 72 KD) expression in the rat spinal cord following morphine dependence and withdrawal: possible new therapy for pain management. Curr Neuropharmacol. 2011;9(1):223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HS, Castellani RJ, Smith MA, Sharma A. The blood-brain barrier in Alzheimer's disease: novel therapeutic targets and nanodrug delivery. Int Rev Neurobiol. 2012;102:47–90.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Muresanu DF, Patnaik R, Sharma A. Exacerbation of brain pathology after partial restraint in hypertensive rats following SiO2 nanoparticles exposure at high ambient temperature. Mol Neurobiol. 2013;48(2):368–79. https://doi.org/10.1007/s12035-013-8502-y. Epub 2013 Jul 6.

  • Sharma HS, Kiyatkin EA, Patnaik R, Lafuente JV, Muresanu DF, Sjöquist PO, Sharma A. Exacerbation of methamphetamine neurotoxicity in cold and hot environments: neuroprotective effects of an antioxidant compound H-290/51. Mol Neurobiol. 2015a;52(2):1023–33. https://doi.org/10.1007/s12035-015-9252-9. Epub 2015 Jun 26.

  • Sharma HS, Feng L, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, Sharma A. TiO2-nanowired delivery of mesenchymal stem cells thwarts diabetes- induced exacerbation of brain pathology in heat stroke: an experimental study in the rat using morphological and biochemical approaches. CNS Neurol Disord Drug Targets. 2015b;14(3):386–99. https://doi.org/10.2174/1871527314666150318114335.

  • Sharma A, Menon P, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Sharma HS. Nanowired drug delivery across the blood-brain barrier in central nervous system injury and repair. CNS Neurol Disord Drug Targets. 2016a;15(9):1092–117. https://doi.org/10.2174/1871527315666160819123059.

  • Sharma HS, Muresanu DF, Lafuente JV, Nozari A, Patnaik R, Skaper SD, Sharma A. Pathophysiology of Blood-brain barrier in brain injury in cold and hot environments: novel drug targets for neuroprotection. CNS Neurol Disord Drug Targets. 2016b;15(9):1045–71. https://doi.org/10.2174/1871527315666160902145145.

  • Sharma HS, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Ozkizilcik A, Castellani RJ, Mössler H, Sharma A. Co-administration of TiO2 nanowired mesenchymal stem cells with cerebrolysin potentiates neprilysin level and reduces brain pathology in Alzheimer’s disease. Mol Neurobiol. 2018;55(1):300–11.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Ozkizilcik A, Manzhulo I, Mössler H, Sharma A. Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer’s disease. Prog Brain Res. 2019a;245:145–200.

    Article  PubMed  Google Scholar 

  • Sharma A, Castellani RJ, Smith MA, Muresanu DF, Dey PK, Sharma HS. 5-Hydroxytryptophan: a precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. Int Rev Neurobiol. 2019b;146:1–44.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: neuroprotective effects of nanowired delivery of cerebrolysin with alpha-melanocyte-stimulating hormone. Prog Brain Res. 2019c;245:1–55.

    Article  PubMed  Google Scholar 

  • Sharma A, Patnaik R, Sharma HS. Neuroprotective effects of 5-HT(3) receptor antagonist ondansetron on morphine withdrawal induced brain edema formation, blood-brain barrier dysfunction, neuronal injuries, glial activation and heat shock protein upregulation in the brain. Int Rev Neurobiol. 2019d;146:209–28.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: superior neuroprotection by co-administration of TiO(2)-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. Prog Brain Res. 2020a;258:1–77.

    Article  PubMed  Google Scholar 

  • Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson’s disease induced hemeoxygenase-2 expression and brain pathology: neuroprotective effects of co-administration of TiO2 nanowired mesenchymal stem cells and cerebrolysin. Prog Brain Res. 2020b;258:157–231.

    Google Scholar 

  • Shaw DM, Johnson AL, MacSweeney DA. Tricyclic antidepressants and tryptophan in unipolar affective disorder. Lancet. 1972;2:1245.

    Article  CAS  PubMed  Google Scholar 

  • Shen YC, Arkes J, Williams TV. Effects of Iraq/Afghanistan deployments on major depression and substance use disorder: analysis of active duty personnel in the US military. Am J Public Health. 2012;102(Suppl 1):S80–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  • Simons FE. Advances in H1-antihistamines. N Engl J Med. 2004;351(21):2203–17.

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM. BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res. 1996;710(1–2):11–20.

    Article  CAS  PubMed  Google Scholar 

  • Skapinakis P, Bakola E, Salanti G, Lewis G, Kyritsis AP, Mavreas V. Efficacy and acceptability of selective serotonin reuptake inhibitors for the treatment of depression in Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. BMC Neurol. 2010;10:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith RS. The macrophage theory of depression. Med Hypotheses. 1991;35:298–306.

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci. 1995;15:1768–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon RL, Corbit JD. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev. 1974;81(2):119–45.

    Article  CAS  PubMed  Google Scholar 

  • Solomon GS, Kuhn AW, Zuckerman SL. Depression as a modifying factor in sport- related concussion: a critical review of the literature. Phys Sportsmed. 2016;44:14–9.

    Article  PubMed  Google Scholar 

  • Starkstein SE, Jorge R, Mizrahi R, Robinson RG. The construct of minor and major depression in Alzheimer’s disease. Am J Psychiatry. 2005;162:2086–93.

    Article  PubMed  Google Scholar 

  • Svenningsson P, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science. 2006;311:77–80.2006.

    Article  CAS  PubMed  Google Scholar 

  • Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P. p11 and its role in depression and therapeutic responses to antidepressants. Nat Rev Neurosci. 2013;14(10):673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson TM, Isaacson BM, Cyborski CM, French LM, Tsao JW, Pasquina PF. Traumatic brain injury incidence, clinical overview, and policies in the US military health system since 2000. Public Health Rep. 2017;21(9):1–9.

    Google Scholar 

  • Szapacs ME, Mathews TA, Tessarollo L, Ernest Lyons W, Mamounas LA, Andrews AM. Exploring the relationship between serotonin and brain-derived neurotrophic factor: analysis of BDNF protein and extraneuronal 5-HT in mice with reduced serotonin transporter or BDNF expression. J Neurosci Methods. 2004;140(1–2):81–92.

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, Hendriksen M, Piggott M, Ferrier IN, Perry E, Ince P, O’Brien JT. A study of the serotonin transporter in the prefrontal cortex in late-life depression and Alzheimer’s disease with and without depression. Neuropathol Appl Neurobiol. 2006;32:296–303.

    Article  CAS  PubMed  Google Scholar 

  • Tommasone BA, Valovich McLeod TC. Contact sport concussion incidence. J Athl Train. 2006;41:470–2.

    PubMed  PubMed Central  Google Scholar 

  • Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D, Ritz L, Nierenberg AA, Lebowitz BD, Biggs MM, Luther JF, Shores-Wilson K, Rush AJ, STAR*D Study Team. Medication augmentation after the failure of SSRIs for depression. N Engl J Med. 2006;354(12):1243–52.

    Article  CAS  PubMed  Google Scholar 

  • Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53(1):151–71.

    Article  PubMed  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519–25.

    Article  CAS  PubMed  Google Scholar 

  • Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res. 1997;28(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  • van Heesch F, Prins J, Korte-Bouws GA, Westphal KG, Lemstra S, Olivier B, Kraneveld AD, Korte SM. Systemic tumor necrosis factor-alpha decreases brain stimulation reward and increases metabolites of serotonin and dopamine in the nucleus accumbens of mice. Behav Brain Res. 2013a;253:191–5.

    Article  PubMed  CAS  Google Scholar 

  • van Heesch F, Prins J, Konsman JP, Westphal KGC, Olivier B, Kraneveld AD, Korte SM. Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study. Brain Behav Immun. 2013b;29:98–103.

    Article  PubMed  CAS  Google Scholar 

  • van Heesch F, Prins J, Konsman JP, Korte-Bouws GA, Westphal KG, Rybka J, Olivier B, Kraneveld AD, Korte SM. Lipopolysaccharide increases degradation of central monoamines: an in vivo microdialysis study in the nucleus accumbens and medial prefrontal cortex of mice. Eur J Pharmacol. 2014;725:55–63.

    Article  PubMed  CAS  Google Scholar 

  • van Zomeren AH, van den Burg W. Residual complaints of patients two years after severe head injury. J Neurol Neurosurg Psychiatry. 1985;48:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas G, Rabinowitz A, Meyer J, Arnett PA. Predictors and prevalence of postconcussion depression symptoms in collegiate athletes. J Athl Train. 2015;50:250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhoeff NP, Christensen BK, Hussey D, et al. Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: a replication study. Pharmacol Biochem Behav. 2003;74(2):425–32.

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Liechti ME, Gamma A, Greer G, Geyer M. Acute psychological and neurophysiological effects of MDMA in humans. J Psychoactive Drugs. 2002;34(2):171–84.

    Article  PubMed  Google Scholar 

  • Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14(11):1262–76.

    Article  CAS  PubMed  Google Scholar 

  • Warden DL, Gordon B, McAllister TW, Silver JM, Barth JT, Bruns J, Drake A, Gentry T, Jagoda A, Katz DL, Kraus J, Labbate LA, Ryan LM, Sparling MB, Walters B, Whyte J, Zapata A, Zitnay G. Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. J Neurotrauma. 2006;23:1468–501.

    Article  PubMed  Google Scholar 

  • Warner-Schmidt JL, et al. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci. 2009;29:1937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner-Schmidt JL, et al. A role for p11 in the antidepressant action of brain-derived neurotrophic factor. Biol Psychiatry. 2010;68:528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner-Schmidt JL, et al. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A. 2011;108:9262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984;295(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  • Weintraub D, Newberg AB, Cary MS, et al. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med. 2005;46:227–32.

    CAS  PubMed  Google Scholar 

  • Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: molecular mechanisms and signaling pathways. Pharmacol Res. 2020;157:104769.

    Article  CAS  PubMed  Google Scholar 

  • Whybrow PC, Prange AJ Jr, Treadway CR. Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement. Arch Gen Psychiatry. 1969;20(1):48–63.

    Article  CAS  PubMed  Google Scholar 

  • Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S. In vitro and in vivo characterisation of [11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomograph. Nucl Med Biol. 2002;29(5):509–15.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Peek-Asa C, Covassin T, Torner JC. Post-concussion symptoms of depression and anxiety in division I collegiate athletes. Dev Neuropsychol. 2015a;40:18–23.

    Article  PubMed  Google Scholar 

  • Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, Cui R. The effects of psychological stress on depression. Curr Neuropharmacol. 2015b;13(4):494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E, Weidenfeld J. Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology. 2001;24(5):531–44.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M, Hashimoto K. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8):e42676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr. 2014;144(10):1637–41.

    Article  CAS  PubMed  Google Scholar 

  • You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, et al. Pro- and antiinflammatory cytokines expression in rat's brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res. 2011;225:135–41.

    Article  CAS  PubMed  Google Scholar 

  • Young SN, Lal S, Feldmuller F, Sourkes TL, Ford RM, Kiely M, Martin JB. Parallel variation of ventricular CSF tryptophan and free serum tryptophan in man. J Neurol Neurosurg Psychiatry. 1976;39:61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JS, Hobbs JG, Bailes JE. The impact of traumatic brain injury on the aging brain. Curr Psychiatry Rep. 2016;18:81.

    Article  PubMed  Google Scholar 

  • Yrondi A, Brauge D, LeMen J, Arbus C, Pariente J. Depression and sports-related concussion: a systematic review. Presse Med. 2017;46:890–902.

    Article  PubMed  Google Scholar 

  • Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2006;31(10):2121–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ research reported here are supported in part by grants from the Air Force Office of Scientific Research (EOARD, London, UK) and Air Force Materiel Command, USAF, under grant number FA8655-05-1-3065; Swedish Medical Research Council (Nr 2710-HSS); Göran Gustafsson Foundation, Stockholm, Sweden (HSS); and Astra Zeneca, Mölndal, Sweden (HSS/AS). We thank Suraj Sharma, Blekinge Institute of Technology, Karlskrona, Sweden, for computer and graphic support. The US Government is authorized to reproduce and distribute reprints for Government purpose notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shanker Sharma .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, H.S., Sharma, A. (2021). Amine Precursors in Depressive Disorders and the Blood-Brain Barrier. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-56015-1_423-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56015-1_423-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56015-1

  • Online ISBN: 978-3-319-56015-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics