Skip to main content

Optimizing the Efficiency of Resource Exchange in Industrial Symbiosis (IS)

  • Living reference work entry
  • First Online:
Responsible Consumption and Production

Definitions

Chertow defines the engagement of traditionally separated and geographically proximate industries in a collective approach to obtain a competitive advantage through the physical exchange of materials, energy, water, and by-products as industrial symbiosis (Chertow 2000).

Introduction

Industrial symbiosis (IS) has been emerged as an effective approach for collaborating industries to exchange resources (Boons et al. 2014). Empirical studies reveal that IS replicates the behaviors of natural ecosystems in which waste from one organism becomes a resource for another (Grant et al. 2010; Milani et al. 2018). As the profound definition in literature, IS engages the separate entities in a collective approach to gain a competitive advantage by involving physical exchange of materials, energy, water, and by-products (Chertow 2007). IS is an industrial network that cooperatively increase their reuse of resources among different industries for economic, environmental, and social...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aissani L, Lacassagne A, Bahers JB, Féon SL (2019) Life cycle assessment of industrial symbiosis: a critical review of relevant reference scenarios. J Ind Ecol 23(4):972–985

    Article  Google Scholar 

  • Aviso KB, Tan RR, Culaba AB, Cruz JB Jr (2011) Fuzzy input–output model for optimizing eco-industrial supply chains under water footprint constraints. J Clean Prod 19(2–3):187–196

    Article  Google Scholar 

  • Baas LW, Boons FA (2004) An industrial ecology project in practice: exploring the boundaries of decision-making levels in regional industrial systems. J Clean Prod 12(8–10):1073–1085

    Article  Google Scholar 

  • Baldassarre B, Schepers M, Bocken N, Cuppen E, Korevaar G, Calabretta G (2019) Industrial Symbiosis: towards a design process for eco-industrial clusters by integrating circular economy and industrial ecology perspectives. J Clean Prod 216:446–460

    Article  Google Scholar 

  • Beloborodko A, Rosa M (2015) The use of performance indicators for analysis of resource efficiency measures. Energy Procedia 72:337–344

    Article  Google Scholar 

  • Bocken NM, De Pauw I, Bakker C, Van der Grinten B (2016) Product design and business model strategies for a circular economy. J Ind Prod Eng 33(5):308–320

    Google Scholar 

  • Boons F, Spekkink W, Jiao W (2014) A process perspective on industrial symbiosis: theory, methodology, and application. J Ind Ecol 18(3):341–355

    Article  Google Scholar 

  • Chae SH, Kim SH, Yoon SG, Park S (2010) Optimization of a waste heat utilization network in an eco-industrial park. Appl Energy 87(6):1978–1988

    Article  CAS  Google Scholar 

  • Chen L, Wang R, Yang J, Shi Y (2010) Structural complexity analysis for industrial ecosystems: a case study on LuBei industrial ecosystem in China. Ecol Complex 7(2):179–187

    Article  Google Scholar 

  • Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25(1):313–337

    Article  Google Scholar 

  • Chertow MR (2007) “Uncovering” industrial symbiosis. J Ind Ecol 11(1):11–30

    Article  Google Scholar 

  • Chertow MR, Ehrenfeld J (2012) Organizing self-organizing systems: toward a theory of industrial symbiosis. J Ind Ecol 16(1):13–27

    Article  Google Scholar 

  • Chertow MR, Lombardi DR (2005) Quantifying economic and environmental benefits of co-located firms. Environmental Science and Technology, 39(17): 6535-6541

    Google Scholar 

  • Costa I, Massard G, Agarwal A (2010) Waste management policies for industrial symbiosis development: case studies in European countries. J Clean Prod 18(8):815–822

    Article  Google Scholar 

  • Desrochers P (2004) Industrial symbiosis: the case for market coordination. J Clean Prod 12(8-10):1099–1110

    Article  Google Scholar 

  • Desrochers P, Leppälä S (2010) Industrial symbiosis: old wine in recycled bottles? Some perspective from the history of economic and geographical thought. Int Reg Sci Rev 33(3):338–361

    Article  Google Scholar 

  • Domenech T, Davies M (2011) Structure and morphology of industrial symbiosis networks: the case of Kalundborg. Procedia Soc Behav Sci 10:79–89

    Article  Google Scholar 

  • Domenech T, Bleischwitz R, Doranova A, Panayotopoulos D, Roman L (2019) Mapping industrial symbiosis development in Europe_ typologies of networks, characteristics, performance and contribution to the circular economy. Resour Conserv Recycl 141:76–98

    Article  Google Scholar 

  • Dong L, Zhang H, Fujita OS, Li H, Fujii M, Dong H (2013) Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki’s experience and practice in Liuzhou and Jinan. J Clean Prod 59:226–238

    Article  Google Scholar 

  • Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, ...Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann 61(2): 587–609

    Google Scholar 

  • European Commission (2017) “The role of waste-to-energy in the circular economy”. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Europe

    Google Scholar 

  • Fichtner W, Tietze-Stöckinger I, Frank M, Rentz O (2005) Barriers of inter-organisational environmental management: two case studies on industrial symbiosis. Prog Ind Ecol Int J 2(1):73–88

    Article  Google Scholar 

  • Fraccascia L, Albino V, Garavelli CA (2017) Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis. Int J Prod Econ 183:273–286

    Article  Google Scholar 

  • Frosch RA, Gallopoulos NE (1989) Strategies for manufacturing. Sci Am 261(3):144–152

    Article  Google Scholar 

  • Geng Y, Fujita T, Park HS, Chiu AS, Huisingh D (2016) Recent progress on innovative eco-industrial development. J Clean Prod 114:1–10

    Article  Google Scholar 

  • Gibbs D (2008) Industrial symbiosis and eco-industrial development: an introduction. Geogr Compass 2(4):1138–1154

    Article  Google Scholar 

  • Gibbs D, Deutz P (2007) Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod 15(17):1683–1695

    Article  Google Scholar 

  • Gibbs D, Deutz P, Proctor A (2005) Industrial ecology and eco-industrial development: a potential paradigm for local and regional development. Reg Stud 39(2):171–183

    Article  Google Scholar 

  • Golev A, Corder GD, Giurco DP (2015) Barriers to industrial symbiosis: insights from the use of a maturity grid. J Ind Ecol 19(1):141–153

    Article  Google Scholar 

  • Grant GB, Seager TP, Massard G, Nies L (2010) Information and communication technology for industrial symbiosis. J Ind Ecol 14(5):740–753

    Article  Google Scholar 

  • Holgado M, Benedetti M, Evans S, Baptista AJ, Lourenço EJ (2018) Industrial symbiosis implementation by leveraging on process efficiency methodologies. Procedia CIRP 69:872–877

    Article  Google Scholar 

  • Huysman S, Sala S, Mancini L, Ardente F, Alvarenga RA, De Meester S et al (2015) Toward a systematized framework for resource efficiency indicators. Resour Conserv Recycl 95:68–76

    Article  Google Scholar 

  • Kim HW, Dong L, Choi AES, Fujii M, Fujita T, Park HS (2018) Co-benefit potential of industrial and urban symbiosis using waste heat from industrial park in Ulsan, Korea. Resour Conserv Recycl 135:225–234

    Article  Google Scholar 

  • Liang L, Rulis P, Ouyang L, Ching WY (2011) Ab initio investigation of hydrogen bonding and network structure in a supercooled model of water. Phys Rev B 83(2):024201

    Article  CAS  Google Scholar 

  • Liu Z, Adams M, Cote RP, Geng Y, Li Y (2018) Comparative study on the pathways of industrial parks towards sustainable development between China and Canada. Resour Conserv Recycl 128:417–425

    Article  Google Scholar 

  • Lombardi DR, Laybourn P (2012) Redefining industrial symbiosis: crossing academic–practitioner boundaries. J Ind Ecol 16(1):28–37

    Article  Google Scholar 

  • Mallawaarachchi H, Sandanayake YG, Karunasena G, Liu C (2019)Optimising the industrial symbiosis: the proposed redevelopment. Paper presented at the 8th CIOBworld construction symposium 2019 on towards a smart, sustainable and resilient built environment, Colombo, 8–10 November 2019

    Google Scholar 

  • Mallawaarachchi H, Sandanayake Y, Karunasena G, Liu C (2020) Unveiling the conceptual development of industrial symbiosis: Bibliometric analysis. J Clean Prod 120618

    Google Scholar 

  • Maqbool A, Mendez AF, Van Eetvelde G (2019b) An assessment of European information technology tools to support industrial symbiosis. Sustainability 11(1):131

    Article  Google Scholar 

  • Marchi B, Zanoni S, Zavanella LE (2017) Symbiosis between industrial systems, utilities and public service facilities for boosting energy and resource efficiency. Energy Procedia 128:544–550

    Article  Google Scholar 

  • Martin M, Svensson N, Fonseca J, Eklund M (2014) Quantifying the environmental performance of integrated bioethanol and biogas production. Renew Energy 61:109–116

    Article  Google Scholar 

  • Massard G, Jacquat O, Zürcher D (2014) International survey on eco-innovation parks. In: workshop on eco-innovation parks, vol. 20, p 12, University of Lausanne, Switzerland

    Google Scholar 

  • Mattila TJ, Pakarinen S, Sokka L (2010) Quantifying the total environmental impacts of an industrial symbiosis-a comparison of process-, hybrid and input− output life cycle assessment. Environ Sci Technol 44(11):4309–4314

    Article  CAS  Google Scholar 

  • Milani A, Schluter L, Gjerding AN (2018) An ecosystem analysis of industrial symbiosis development in Aalborg, Denmark, Department of Business and Management, Innovation, Knowledge and Entrepreneurial Dynamics, Aalborg University, Denmark

    Google Scholar 

  • Morales EM, Diemer A, Cervantes G, Carrillo-González G (2019) “By-product synergy” changes in the industrial symbiosis dynamics at the Altamira-Tampico industrial corridor: 20 years of industrial ecology in Mexico. Resour Conserv Recycl 140:235–245

    Article  Google Scholar 

  • Pai JT, Hu D, Liao WW (2018) Research on eco-efficiency of industrial parks in Taiwan. Energy Procedia 152:691–697

    Article  Google Scholar 

  • Park HS, Behera SK (2014) Methodological aspects of applying eco-efficiency indicators to industrial symbiosis networks. J Clean Prod 64:478–485

    Article  Google Scholar 

  • Schaffartzik A, Mayer A, Gingrich S, Eisenmenger N, Loy C, Krausmann F (2014) The global metabolic transition: regional patterns and trends of global material flows, 1950–2010. Glob Environ Chang 26:87–97

    Article  Google Scholar 

  • Shi X, Li X (2019) A symbiosis-based life cycle management approach for sustainable resource flows of industrial ecosystem. J Clean Prod 226:324–335

    Article  Google Scholar 

  • Sun L, Spekkink W, Cuppen E, Korevaar G (2017) Coordination of industrial symbiosis through anchoring. Sustainability 9(4):549

    Article  Google Scholar 

  • Tao Y, Evans S, Wen Z, Ma M (2019) The influence of policy on industrial symbiosis from the Firm’s perspective: a framework. J Clean Prod 213:1172–1187

    Article  Google Scholar 

  • Tiu BTC, Cruz DE (2017) An MILP model for optimizing water exchanges in eco-industrial parks considering water quality. Resour Conserv Recycl 119:89–96

    Article  Google Scholar 

  • Tukker A, Guinée J, Van Oers L, Van der Voet E (2015) Towards a resource efficiency index of nations. World Res Forum:1–49

    Google Scholar 

  • Van Beers D, Bossilkov A, Corder G, Van Berkel R (2007) Industrial symbiosis in the Australian minerals industry: the cases of Kwinana and Gladstone. J Ind Ecol 11(1):55–72

    Article  Google Scholar 

  • Van Berkel R, Fujita T, Hashimoto S, Geng Y (2009) Industrial and urban symbiosis in Japan: analysis of the eco-town program 1997–2006. J Environ Manag 90(3):1544–1556

    Article  Google Scholar 

  • Wolf A, Karlsson M (2008) Evaluating the environmental benefits of industrial symbiosis: discussion and demonstration of a new approach. Prog Ind Ecol Int J 5(5–6):502–517

    Article  CAS  Google Scholar 

  • Wu J, Qi H, Wang R (2016) Insight into industrial symbiosis and carbon metabolism from the evolution of iron and steel industrial network. J Clean Prod 135:251–262

    Article  Google Scholar 

  • Zhang X, Chai L (2019) Structural features and evolutionary mechanisms of industrial symbiosis networks: comparable analyses of two different cases. J Clean Prod 213:528–539

    Article  Google Scholar 

  • Zhang Y, Zheng H, Chen B, Su M, Liu G (2015) A review of industrial symbiosis research: theory and methodology. Front Earth Sci 9(1):91–104

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng H, Shi H, Yu X, Liu G, Su M et al (2016) Network analysis of eight industrial symbiosis systems. Front Earth Sci 10(2):352–365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshini Mallawaarachchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mallawaarachchi, H., Karunasena, G., Sandanayake, Y. (2020). Optimizing the Efficiency of Resource Exchange in Industrial Symbiosis (IS). In: Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T. (eds) Responsible Consumption and Production. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71062-4_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71062-4_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71062-4

  • Online ISBN: 978-3-319-71062-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics