Skip to main content

Recycling Wastewater for Reuse

  • Living reference work entry
  • First Online:
Responsible Consumption and Production

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Definition

Water recycling refers to reuse of the water through some process, thereby cleaning the water of its impurities and making it fit for human use or reuse. Water recycling is widely used in the case of urban use and industrial applications where the water once used in industrial use is reused after cleaning it again through filtration or other purposes.

Introduction

Researchers have identified that there is a threat to our planet in terms of shortage of drinking water. It has been observed that there is a shortage of freshwater and there is an urgent need to minimize the use of water to protect the freshwater, which is already in short supply. Recycling water refers to reuse of water so that the water is again and again used. Water recycling involves treating used water to make it reusable and reusing it. Water recycling involves recycling, chemical recycling to ensure that the water is reusable (Anderson 2003).

Need of Water Recycling

Researchers have identified that water is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Ghaffar AS, El-Attar HA, Elsokkary IH (1985) Egyptian experience in the treatment and use of sewage sludge in agriculture. In: Proceedings of the FAO regional seminar on ‘the treatment and use of sewage effluent for irrigation’ Butterworths, London, pp 210–222

    Google Scholar 

  • Adebayo GB, Otunola GA, Ajao TA (2009) Assessment and biological treatment of effluent from textile industry. Afr J Biotechnol 8(18)

    Google Scholar 

  • Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1–3):87–95

    Article  CAS  Google Scholar 

  • Anderson J (2003) The environmental benefits of water recycling and reuse. Water Sci Technol Water Supply 3(4):1–10

    Article  CAS  Google Scholar 

  • Anderson J, Hoffman S, Peters C (1972) Factors influencing reverse osmosis rejection of organic solutes from aqueous solution. J Phys Chem 76:4006

    Article  CAS  Google Scholar 

  • Applegate L (1984) Membrane separation processes. Chem Eng 64

    Google Scholar 

  • Arthur S (1989) Structure – property relationship in a thin film composite reverse osmosis membrane. J Membr Sci 46:243

    Article  CAS  Google Scholar 

  • Avlonitis S, Hanbury WT, Hodgkiess T (1992) Chlorine degradation of aromatic polyamides. Desalination 85(3):321–334

    Article  CAS  Google Scholar 

  • Baker R (1990) Membrane and module preparation. Membrane separation systems. US DOE report, DOE/ER/30133-H1, Vol 2

    Google Scholar 

  • Balla W, Essadki AH, Gourich B, Dassaa A, Chenik H, Azzi M (2010) Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external – loop airlift reactor. J Hazard Mater 184:710–716

    Article  CAS  Google Scholar 

  • Bartels CR, Dorawala TG, Stephenson MT, Pasternak M, Reale Jr J (1989) U.S. Patent no. 4,872,991. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Basha CA, Sendhil J, Selvakumar KV, Muniswaran PKA, Lee CW (2012) Electrochemical degradation of textile dyeing industry effluent in batch and flow reactor systems. Desalination 285:188–197

    Article  CAS  Google Scholar 

  • Beckmann R (2001) Putting wastewater to work. The Australian Centre for International Agricultural Research- Partners- number 14, may 2001

    Google Scholar 

  • Bhattacharyya D, Jevtitch M, Schrodt J, Fairweather G (1986) Prediction of membrane separation characteristics by pore distribution measurements and surface force-pore flow model. Chem Eng Commun 42:111

    Article  CAS  Google Scholar 

  • Bhattacharya D, Williams ME, Ray RJ, Mccray SB (1992) Reverse osmosis: design and selected applications. In: Membrane handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  • Bitter J (1991) Transport mechanisms in membrane separation processes. Plenum Press, New York

    Book  Google Scholar 

  • Bodalo-Santoyo, Gomez-Carrasco JL, Gomez-Gomez E, MaximoMartin F, Hidalgo-Montesinos AM (2003) Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155:101–108

    Article  CAS  Google Scholar 

  • Bulc TG, Ojstrsek A (2008) The use of constructed wetland for dye-rich textile wastewater treatment. J Hazard Mater 155(128):76–82

    Article  CAS  Google Scholar 

  • Cabasso I (1987) Encyclopedia of polymer science and engineering, vol 9. Wiley, New York

    Google Scholar 

  • Cadotte JE (1981) U.S. Patent no. 4,277,344. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Cadotte J, King R, Majerle R, Petersen R (1981) Interfacial synthesis in the preparation of reverse osmosis membranes. J Macromol Sci Chem 15:727

    Article  Google Scholar 

  • Cartwright PS (1985) Membranes separations technology for industrial effluent treatment – a review. Desalination 56:17

    Article  CAS  Google Scholar 

  • Cartwright PS (1990) Membranes for industrial wastewater treatment – a technical/application perspective. Paper presented at the 1990 international conference on membranes and membrane Processes, Chicago, 20–24 August

    Google Scholar 

  • Cartwright PS (1991) Zero discharge/water reuse – the opportunities for membrane technologies in pollution control. Desalination 83:225

    Article  CAS  Google Scholar 

  • Chang MC, Shu HY, Chang CC, Chen WH (2010) Using wasted basic oxygen furnace (BOF) slag for decolorization of diazo dye acid black 24 wastewater. Fresenius Environ Bull 19:1118–1124

    CAS  Google Scholar 

  • Chian E, Bruce W, Fang H (1975) Removal of pesticides by reverse osmosis. Environ Sci Technol 9:364

    Article  Google Scholar 

  • Chiu HC, Liu CH, Chen SC, Suen SY (2009) Adsorption removal of anionic dye by inorganic – organic hybrid anion – exchange membranes. J Membr Sci 337:282–290

    Article  CAS  Google Scholar 

  • Ciardelli G, Corsi L, Marcucci M (2000) Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl 31:189–197

    Article  Google Scholar 

  • CPCB (1999) Water quality status of Yamuna River. Central Pollution Control Board (1999–2000)

    Google Scholar 

  • Coutts SS (2006) A recycled water strategy for regional urban communities. Desalination 188(1-3):185–194

    Article  CAS  Google Scholar 

  • CWR (2004) Study on the effect of sewage effluent on groundwater in Avaniyapuram of Madurai city. Centre for Water Resources, Anna University, Chennai United Nations (2004) World urbanization prospects: the 2003 revision database, Department of Economics and Social affairs. Population Division, New York

    Google Scholar 

  • Duvel W, Helfgott T (1975) Removal of wastewater organics by reverse osmosis. J Water Pollut Control Fed 47:57

    CAS  Google Scholar 

  • Edwards V, Schubert P (1974) Removal of 2, 4-D and other persistent organic molecules from water supplies by reverse osmosis. J Am Water Works Assoc 66:610

    Article  CAS  Google Scholar 

  • ElDefrawy NMH, Shaalan HF (2007) Integrated membrane solutions for green textile industries. Desalination 204:241–254

    Article  CAS  Google Scholar 

  • Fang H, Chian E (1976) Reverse osmosis separation of polar organic compounds in aqueous solution. Environ Sci Technol 10:364

    Article  CAS  Google Scholar 

  • Ferguson P (1980) The first decade of commercial reverse osmosis desalting 1968–1978. Desalination 32:5

    Article  Google Scholar 

  • Garcia-Figueruelo C, Bes-Pia A, Mendoza-Roca JA, Lora-Garcia J, Cuartas-Uribe B (2009) Reverse osmosis of the retentate from the Nanofiltration of secondary effluents. Desalination 240:274–279

    Article  CAS  Google Scholar 

  • Ghabris A, Abdel-Jawad M, Aly G (1989) Municipal wastewater renovation by reverse osmosis, state of the art. Desalination 75:213

    Article  CAS  Google Scholar 

  • Glaves C, Smith D (1989) Membrane pore structure analysis via NMR spin-lattice relaxation experiments. J Membr Sci 46:167

    Article  CAS  Google Scholar 

  • Gomez M, Plaza F, Garralon G, Perez J, Gomez MA (2007) A comparative study of tertiary wastewater treatment by physicochemical – UV process and macrofiltration – ultrafiltration technologies. Desalination 202:369–376

    Article  CAS  Google Scholar 

  • Gopinath KP, Murugesan S, Abraham J, Muthukumar K (2009) Bacillus sp. mutant for improved biodegradation of Congo red: random mutagenesis approach. J Biores Technol 100:6295–6300

    Article  CAS  Google Scholar 

  • Grilli S, Piscitalli D, Mattioli D, Casu S, Spagni A (2011) Textile waste water treatment in a bench – scale anaerobic- biofilm anoxic – aerobic membrane bioreactor combined with nanofiltration/reverse osmosis. J Environ Sci Health 46:1512–1518

    Article  CAS  Google Scholar 

  • Han M (1989) Cellulose acetate reverse osmosis membranes: effects of casting variables on membrane pore structure and transport properties. MS Thesis, D. Bhattacharyya, Director, Department of Chemical Engineering, University of Kentucky, Lexington

    Google Scholar 

  • Han M, Bhattacharyya D (1991) Characterization of reverse osmosis cellulose acetate membranes by gas adsorption method: effect of casting variables and chlorine damage. J Membr Sci 62:325

    Article  CAS  Google Scholar 

  • Hartling C (1996) Water reuse summary for fiscal year 1995–96. From Internet, file:\\A:\Fiscal\FISCALw HTMLACSD water reuse summary for fiscal, pp 95–96

    Google Scholar 

  • Hasani ZM, Alavi MMR, Arami M (2009) Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum. Water Sci Technol 59:1343–1351

    Article  CAS  Google Scholar 

  • United Nations Habitat (2004) State of the World’s cities, 2004/05. UN- Habitat Report, Nairobi, Kenya

    Google Scholar 

  • Jonnson G, Boesen C (1975) Water and solute transport through cellulose acetate reverse osmosis membranes. Desalination 17:145

    Article  Google Scholar 

  • Juanico M (1993) Alternative schemes for municipal sewage treatment and disposal in industrialized countries: Israel as a case study. Ecol Eng 2(2):101–118

    Article  Google Scholar 

  • Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabi S (2003) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal irons from aqueous solutions. Bioresour Technol 87:129–132

    Article  CAS  Google Scholar 

  • Katal R, Pahlavanzadeh H (2011) Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: application to the treatment of paper mill wastewater. Desalination 265(1–3):199–205

    Article  CAS  Google Scholar 

  • Kesting RE (1985) Synthetic polymeric membranes: a structural perspectives. Wiley, New York

    Google Scholar 

  • Kesting R (1990) The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J Appl Polym Sci 41:2739

    Article  CAS  Google Scholar 

  • Kim TH, Park C, Kim S (2005) Water recycling from desalination and recycling method of reactive dye manufacturing industry by combined membrane filtration. J Clean Prod 13(8):779–786

    Article  Google Scholar 

  • Koo J, Petersen R, Cadotte J (1986) ESCA characterization of chlorine-damaged polyamide reverse osmosis membrane. Polym Prepr 27:391

    CAS  Google Scholar 

  • Koo T, Lee YJ, Sheikholesami R (2001) Silica fouling and clearing of reverse osmosis membranes. Desalination 139:43–56

    Article  CAS  Google Scholar 

  • Koros WJ, Fleming GK, Jordan SM, Kim TH, Hoehn HH (1988) Polymeric membrane materials for solution-diffusion based permeation separations. Prog Polym Sci 13(4):339–401

    Article  CAS  Google Scholar 

  • Kozáková Z, Nejezchleb M, Krčma F, Halamová I, Čáslavský J, Dolinová J (2010) Removal of organic dye direct red 79 from water solutions by DC diaphragm discharge: analysis of decomposition products. Desalination 258(1–3):93–99

    Article  CAS  Google Scholar 

  • Light W, Cooper WJ (1981) Removal of chemical carcinogens from water/wastewater by reverse osmosis. Chem Water Reuse 1

    Google Scholar 

  • Lonsdale H (1982) The growth of membrane technology. J Membr Sci 10:81

    Article  CAS  Google Scholar 

  • Lonsdale HK (1987) The evolution of ultrathin synthetic membranes. J Membr Sci 33(2):121–136

    Article  CAS  Google Scholar 

  • Lonsdale H, Merten U, Riley R (1965) Transport properties of cellulose acetate osmotic membranes. J Appl Polym Sci 9:1341

    Article  CAS  Google Scholar 

  • Malik PK, Saha SK (2003) Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep Purif Technol 31:241–250

    Article  CAS  Google Scholar 

  • Meas Y, Ramirez JA, Villalon MA, Chapman TW (2010) Industrial wastewater treated by electrocoagulation. Port Electrochim Acta 55:8165–8171

    Article  CAS  Google Scholar 

  • Mehdizadeh H, Dickson J, Eriksson P (1989) Temperature effects on the performance of thin-280 VI/Reverse Osmosisfilm composite aromatic polyamide membranes. Ind Eng Chem Res 28:814

    Article  CAS  Google Scholar 

  • Merif S, Selc-uk H, Belgiorno V (2005) Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes. Water Res 39:1147–1153

    Article  CAS  Google Scholar 

  • Miller JE (2003) Review of water resources and desalination technologies. Sandia national labs unlimited release report SAND-2003-0800

    Google Scholar 

  • Mohserf MS, Jaber JO, Afonso MD (2003) Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 157:167

    Article  Google Scholar 

  • Montgomery JM, Engineers C (1985) Water treatment principles and design. Wiley, New York, pp 116–122

    Google Scholar 

  • Naveed S, Bhatti I, Ali K (2006) Membrane technology and its suitability for treatment of textile wastewater in Pakistan. J Res Sci 17(3):155–164

    Google Scholar 

  • Nhapi I, Gijzen HJ (2005) A 3-step strategic approach to sustainable wastewater managementage/gi. Water SA 31(1):133–140

    Article  CAS  Google Scholar 

  • Ong SA, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K (2010) Treatment of azo dye acid Orange 7 containing wastewater using upflow constructed wetland with and without supplementary aeration. J Biores Technol 101:9049–9057

    Article  CAS  Google Scholar 

  • Patil BN, Naik DK, Shrivastava VS (2010) Treatment of textile dyeing and printing wastewater by semiconductor photocatalysis. J Appl Sci Environ Sanit 5(3):309–316

    CAS  Google Scholar 

  • Petersen RJ, Cadotte JE (1990) Thin film composite reverse osmosis membranes. In: Handbook of industrial membrane technology, M. Porter, ed., Noyes Publications, Park Ridge, NJ, pp 307–348

    Google Scholar 

  • Pusch W (1986) Measurement techniques of transport through membranes. Desalination 59:105

    Article  CAS  Google Scholar 

  • Radha KV, Sridevi V, Kalaivani K (2009) Electrochemical oxidation for the treatment of textile industry wastewater. J Biores Tech 100:987–990

    Article  CAS  Google Scholar 

  • Ramachandran T, Ganesan P, Hariharan S (2009) Decolourization of textile effluents – an overview. J Inst Eng (India) 90:20–25

    Google Scholar 

  • Reid C, Breton E (1959) Water and ion flow across cellulosic membranes. J Appl Polym Sci 1:133

    Article  CAS  Google Scholar 

  • Rekha R, Chauhan P, Gangopadhyay UK (2009) Zero effluent process by using membrane type solute separation systems for wet process house. Asian Text J 18:65–69

    CAS  Google Scholar 

  • Rodriguez C, Linge K, Blair P, Busetti F, Buynder BDP, Weinstein P, Cook A (2012) Recycled water; potential health risks from volatile organic compounds and use of 1, 4 –dichlorobenzene as treatment performance indicator. Water Res 46:93–106

    Article  CAS  Google Scholar 

  • Qin JJ, Oo MH, Coniglio B (2005) Relationship between feed pH and permeate pH in reverse osmosis with town water as feed. Desalination 177(1–3):267–272

    Article  CAS  Google Scholar 

  • Sadri Moghaddam S, Moghaddam MA, Arami M (2010) Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J Hazard Mater 175(1–3):651–657

    Article  CAS  Google Scholar 

  • Sattar Kahdim A, Ismail S, Jassim AA (2003) Modeling of reverse osmosis system. Desalination 158:323–329

    Article  Google Scholar 

  • Selcuk H (2005) Decolourization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes Pigments 64:217–222

    Article  CAS  Google Scholar 

  • Shafaei A, Rezayee M, Arami M, Nikazar M (2010) Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination 260(1–3):23–28

    Article  CAS  Google Scholar 

  • Shah TN, Yoon Y, Peterson CL, Lueptow RM (2006) Rotating reverse osmosis and spiral wound reverse osmosis filtration: a comparison. J Membr Sci 285:353–361

    Article  CAS  Google Scholar 

  • Shelef G, Azov Y (1987) High-rate oxidation ponds: the Israeli experience. Water Sci Technol 19(12):249–255

    Article  CAS  Google Scholar 

  • Sherwood T, Brian P, Fisher R (1967) Desalination by reverse osmosis. Ind Eng Chem Fundam 6:2

    Article  CAS  Google Scholar 

  • Sheth N, Dave S (2010) Enhanced biodegradation of reactive violet 5R manufacturing wastewater using down flow fixed film bioreactor. J Biores Technol 101:8627–8631

    Article  CAS  Google Scholar 

  • Simon G, Calmon C (1986) Experimental methods for the determination of non-transport properties of membranes. Desalination 59:61

    Article  CAS  Google Scholar 

  • Sioutopoulos DC, Karabelas AJ (2012) Correlation of organic fouling resistances in reverse osmosis and ultrafiltration membranes filtration under constant flux and constant pressure. J Membr Sci 407(408):34–46

    Article  CAS  Google Scholar 

  • Slater C, Ahlert R, Uchrin C (1983) Applications of reverse osmosis to complex industrial wastewater treatment. Desalination 48:171

    Article  CAS  Google Scholar 

  • Soltanieh M, Gill W (1981) Review of reverse osmosis membranes and transport models. Chem Eng Comm 12:279

    Article  CAS  Google Scholar 

  • Suksaroj C, Heran M, Allegre C, Persin F (2005) Treatment of textile plant effluent by Nanofiltration and reverse osmosis for water reuse. Desalination 178:333–341

    Article  CAS  Google Scholar 

  • Symons (1968) Water reuse what do we mean. Water Waste Eng 40–43

    Google Scholar 

  • Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143:11–20

    Article  CAS  Google Scholar 

  • Ting TM, Jamaludin N (2008) Decolorization and decomposition of organic pollutants for reactive and disperse dyes using electron beam technology: effect of concentration of pollutants and irradiation dose. Chemosphere 73:76–80

    Article  CAS  Google Scholar 

  • Treffry-Goatley K, Buckley CA, Groves GR (1983) Reverse osmosis treatment and reuse of textile dyehouse effluents. Desalination 47(1–3):313–320

    Article  CAS  Google Scholar 

  • WHO (2003) Reuse of effluents: methods of wastewater treatment and health safeguards. Technical report no 517, Geneva

    Google Scholar 

  • Williams ME, Hestekin JA, Smothers CN, Bhattacharyya D (1999) Separation of organic pollutants by reverse osmosis and Nanofiltration membranes: mathematical models and experimental verification. Ind Eng Chem Res 38(10):3683–3695

    Article  CAS  Google Scholar 

  • Winrock (2006) Urban wastewater: livelihoods, health and environmental impacts in India. Winrock International India, New Delhi

    Google Scholar 

  • Yi F, Chen S, Yuan C (2008) Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. J Hazard Mater 157:79–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilok Kumar Jain .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jain, T.K., Jain, N. (2019). Recycling Wastewater for Reuse. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Responsible Consumption and Production. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71062-4_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71062-4_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71062-4

  • Online ISBN: 978-3-319-71062-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics