Skip to main content

Green Chemistry for Sustainable Production and Consumption Patterns

  • Living reference work entry
  • First Online:
Responsible Consumption and Production

Definition

With the need for conscious and sustainable production, green chemistry is used to preserve the environment and protect the soil, ensuring sustainable management and the efficient use of natural resources, and substantially reduce waste generation with the environmentally sound handling of chemicals, generating sustainable patterns of production and consumption, in line with the SDGs.

Introduction

The publication of a comprehensive, and extensive, road map of targets and indicators underpinning the sustainable development goals (SDGs) in 2015 was a milestone for aligning not only developing countries but also developed ones on the path of sustainable development (United Nations General Assembly 2015). The SDGs have set the 2030 agenda to transform the world by ensuring, simultaneously, human well-being, economic prosperity, and environmental protection. Comprising of 17 goals and 169 targets, SDGs aim at tackling multiple and complex challenges faced by humankind, such as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastas PT, Warner J (1998) Green chemistry: theory and practice, Oxford University Press, Oxford

    Google Scholar 

  • Andrade MLA, Viera JRM, Cunha LMS Keller MC, Fulda RS (1997) Indústria do cobre – área de operações industriais 2 – AO2

    Google Scholar 

  • Andrade JCM, Tavares SRL, Mahler CF (2007) Fitorremediação: o uso de plantas na melhoria da qualidade ambiental. Oficina de Textos, São Paulo

    Google Scholar 

  • Andreazza R, Okeke BC, Lambais MR, Bortolon L, Melo GWB, Camargo FAO (2010) Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 81(9):1149–1154. https://doi.org/10.1016/j.chemosphere.2010.09.047

    Article  CAS  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Giacometti M, Roehrs D, Lambais MR, Camargo FAO (2011) Potential phytoextraction and phytostabilization of perennial peanut on copper contaminated vineyard soils and copper mining waste. J Biol Trace Elem Res 14(3):1729–1739. https://doi.org/10.1007/s12011-011-8979-z

    Article  CAS  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Bento FM, Camargo FAO (2015) Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils. Braz J Biol 75(1):868–8775. https://doi.org/10.1590/1519-6984.01914

    Article  CAS  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97(1):111–117. https://doi.org/10.1111/j.1399-3054.1996.tb00486.x

    Article  CAS  Google Scholar 

  • Arias M, López E, Fernández D, Soto B (2004) Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides. J Soil Sci 169(11):796–805. https://doi.org/10.1097/01.ss.0000148739.82992.59

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  Google Scholar 

  • ATSDR – Agency For Toxic Substances And Disease Registry (2004) Toxicological profile for copper. Atlanta, Georgia

    Google Scholar 

  • Barker AV, Pilbeam DJ (2016) Handbook of plant nutrition. RC Press, London

    Book  Google Scholar 

  • Brasil (1989) Lei n° 7.802 de 11 de julho de 1989. Lei dos agrotóxicos

    Google Scholar 

  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102(2):151–161. https://doi.org/10.1016/S0269-7491(98)00120-1

    Article  CAS  Google Scholar 

  • Brun LA, Maillet J, Hinsinger P, Pépin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111(2):293–302. https://doi.org/10.1016/S0269-7491(00)00067-1

    Article  CAS  Google Scholar 

  • Brundtland GH (1985) World commission on environment and development. Environ Policy Law 14(1):26–30

    Google Scholar 

  • Caires SM, Fontes MPF, Fernandes RBA, Neves JCL, Fontes RLF (2011) Desenvolvimento de mudas de cedro-rosa em solo contaminado com cobre: tolerância e potencial para fins de fitoestabilização do solo. Revista Árvore 35(6):1181–1188. https://doi.org/10.1590/S0100-67622011000700004

    Article  Google Scholar 

  • Camargo ALB (2003) Desenvolvimento sustentável: dimensões e desafios. Campinas, Papirus

    Google Scholar 

  • Canes SEP, Menegaes JF, Magano DA, Costa EC (2016) A inter-relação da valoração econômica do impacto ambiental. Acta Iguazu 5(1):105–114

    Google Scholar 

  • Cann MC (1999) Bringing state-of-the-art, applied, novel, green chemistry to the classroom by employing the Presidential Green Chemistry Challenge Awards. J Chem Educ 76(12):1639

    Article  CAS  Google Scholar 

  • Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kaminski J, Melo JWB (2008) Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Revista Brasileira de Ciências do Solo 32:1479–1487. https://doi.org/10.1590/S0100-06832008000400012

    Article  CAS  Google Scholar 

  • Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123(2):229–238. https://doi.org/10.1016/S0269-7491(02)00374-3

    Article  CAS  Google Scholar 

  • Chen Y, Wang Y, Wu W, Lin Q, Xue S (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulatorand non-accumulator. Sci Total Environ 356(3):247–255. https://doi.org/10.1016/j.scitotenv.2005.04.028

    Article  CAS  Google Scholar 

  • CONAMA – Conselho Nacional do Meio Ambiente (2005) Resolução no. 357: Classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e outras providências. Brasília

    Google Scholar 

  • CONAMA – Conselho Nacional do Meio Ambiente (2011) Resolução no. 430, de 13 de maio de 2011. Correlações: Complementa e altera a Resolução n° 357/2005. BRASIL. Ministério do Meio Ambiente. Brasília

    Google Scholar 

  • Coutinho HD, Barbosa AR (2007) Fitorremediação: considerações gerais e características de utilização. Revista Silva Lusitana 15(1):103–117

    Google Scholar 

  • de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN (2019) Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharm J 27(1):1–8

    Article  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17(1):103–112. https://doi.org/10.1590/S1677-04202005000100009

    Article  CAS  Google Scholar 

  • FAO – Food and Agriculture Organization of the United Nations (2015) Status of the world’s soil resources: main report. FAO, Rome

    Google Scholar 

  • Farias LA, Fávaro DIT (2011) Vinte anos de química verde: conquistas e desafios. Quím Nova 34(6):1089–1093. https://doi.org/10.1590/S0100-40422011000600030

    Article  CAS  Google Scholar 

  • Ferreira ME, Cruz MCP (1991) Cobre. In: Ferreira ME, Cruz MCP (eds) Micronutrientes na agricultura. POTAFOS/CNPq, Piracicaba

    Google Scholar 

  • Fiskell JGA (1965) Copper. In: Black CA, Evans DD, White JL, Ensminger LE, Clarck FE (eds) Methods of soil analysis. Part 2: chemical and microbiological properties. Madison, American Society of Agronomy

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):214–231. https://doi.org/10.15666/aeer/0301_001018

    Article  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122. https://doi.org/10.1007/s00425-006-0225-0

    Article  CAS  Google Scholar 

  • Gonçalves-Júnior AC, Carvalho EA, Coelho GF, Schwantes D, Nacke H, Moraes AJ (2013) Disponibilidade de nutrientes e elementos potencialmente tóxicos para as plantas de hissopo em solo arenoso sob adubação mineral e orgânica. Scientia Agraria Paranaensis 12(2):105–114. https://doi.org/10.1818/sap.v12i2.6451

    Article  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64. https://doi.org/10.1590/S1677-04202005000100005

    Article  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jeyakumar P, Loganathan P, Sivakumara S, Anderson CWN, Mclaren RG (2010) Bioavailability of copper and zinc to poplar and microorganisms in a biosolids– amended soil. Aust J Soil Res 48(1):1–11. https://doi.org/10.1071/SR09169

    Article  CAS  Google Scholar 

  • Ferreira VF, da Rocha DR, da Silva FC (2014) Química verde, economia sustentável e qualidade de vida. Rev Virtual Quím 6(1):85–111

    Google Scholar 

  • Jungstedt LOC (2002) Direito Ambiental – Legislação, 2a edn. Thex Editora Ltda, Rio de Janeiro

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the rootesoil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kos B, Lesstan D (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut 132(2):333–339. https://doi.org/10.1016/j.envpol.2004.04.004

    Article  CAS  Google Scholar 

  • Lenardão EJ, Freitag RA, Dabdoub MJ, Batista ACF, Silveira CA (2003) “Green chemistry” – os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Química Nova 26(1):123–129

    Article  Google Scholar 

  • Lutts RH (1985) Chemical fallout: Rachel Carson’s Silent Spring, radioactive fallout, and the environmental movement. Environ Hist Rev 9(3):210–225

    Article  CAS  Google Scholar 

  • Lima VF, Merçon F (2011) Metais Pesados no Ensino de Química. Revista Química Nova na Escola 33(4):199–205

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837. https://doi.org/10.1016/j.jenvman.2008.01.014

    Article  Google Scholar 

  • Mackie KA, Müller T, Kandeler E (2012) Remediation of copper in vineyards – a mini review. J Environ Pollut 167:16–26. https://doi.org/10.1016/j.envpol.2012.03.023

    Article  CAS  Google Scholar 

  • Malavolta E (2008) O futuro da nutrição de plantas tendo em vista aspectos agronômicos, econômicos e ambientais. Internation Plant Nutrion Institute, Piracicaba

    Google Scholar 

  • Marcondes S (2005) Brazil, Love at First Sight! Environmental travel in Brazil from the 16th to the 21st century, Peirópolis

    Google Scholar 

  • Mariano DC, Okumura RS (2012) Aspectos agronômicos, uso pelo homem e mecanismos da fitorremediação: uma revisão. Revista em Agronegócios e Meio Ambiente 5:85–101

    Google Scholar 

  • Marques Filho LC (2016) Capitalismo e colapso ambiental, 2nd edn. Ed. da Unicamp, Campinas

    Google Scholar 

  • Marques M, Aguiar CRC, Silva JJLS (2011) Desafios, técnicas e barreiras sociais, econômicas e regulatórias na fitorremediação de solos contaminados. Rev Bras Ciênc Solo 35(1):1–11. https://doi.org/10.1590/S0100-06832011000100001

    Article  CAS  Google Scholar 

  • Melo GWB, Casali CA, Brunetto G, Rheinheimer DS, Moterle DF, Kaminski J (2008) Cobre em solos cultivados com a videira na Serra Gaúcha do Rio Grande do Sul. EMBRAPA Uva e Vinho, Bento Gonçalves

    Google Scholar 

  • Menegaes JF, Magano DA, Costa EC, Trevissan PV, Barbieri M (2014) Valoração ambiental sobre a perspectiva dos princípios da prevenção e da precaução. Ciência e Natura 36:675–682. https://doi.org/10.5902/2179460X12828

    Article  Google Scholar 

  • Menegaes JF, Swarowsky A, Backes FAAL, Bellé RA, Izário Filho HJ (2017a) Consumo hídrico de calla lily submetida ao manejo de irrigação via solo e teores de cobre. Irriga 22(1):74–86. https://doi.org/10.15809/irriga.2017v22n1p74-86

    Article  Google Scholar 

  • Menegaes JF, Backes FAAL, Bellé RA, Swarowsky A, Salazar RFS (2017b) Avaliação do potencial fitorremediador de crisântemo em solo com excesso de cobre. Ornament Hortic 23(1):63–71. https://doi.org/10.14295/oh.v23i1.915

    Article  Google Scholar 

  • Menegaes JF, Bellé RA, Swarowsky A, Backes FAAL, Padrón RAR (2019) Consumo hídrico e desenvolvimento da cravina-chinesa cultivada em diferentes teores de Cu no solo. Acta Iguazu 8(1):76–91

    Google Scholar 

  • Mertens J, Luyssaert S, Verheyen K (2005) Use and abuse of trace metal concentrations in plants tissue for biomonitoring and phytoextraction. Environ Pollut 138(1):1–4. https://doi.org/10.1016/j.envpol.2005.01.002

    Article  CAS  Google Scholar 

  • Miotto A, Ceretta CA, Brunetto G, Nicoloso FT, Girotto E, Farias JG, Tiecher TL, Conti L, Trentin G (2014) Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 374:593–610. https://doi.org/10.1007/s11104-013-1886-7

    Article  CAS  Google Scholar 

  • Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biol 1(1):5–11

    Google Scholar 

  • Oliveira Filho JE (2004) Gestão ambiental e sustentabilidade: um novo paradigma eco-econômico para as organizações modernas. Domus on line: Rev Teoria Polít, Social e Cidadania, Salvador

    Google Scholar 

  • Oliveira OLP, Juergens JP, Bellé V, Rigo JC (2004) Manejo do solo e da cobertura verde em videiras visando sustentabilidade. EMBRAPA Uva e Vinho, Bento Gonçalves

    Google Scholar 

  • Oliveira DL, Rocha C, Moreira PC, Laudares SO (2009) Plantas nativas do cerrado: uma alternativa para fitorremediação. Rev Estud 36(12):1141–1159. https://doi.org/10.18316/1044

    Article  Google Scholar 

  • ONU – Organização das Nações Unidas (2015) Relatório sobre os Objetivos de Desenvolvimento do Milênio. Nova York

    Google Scholar 

  • Oorts K (2013) Copper. In: Alloway BJ (ed) Heavy metals in soils – trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer Environmental Pollution, London

    Google Scholar 

  • Parzych AE (2016) Accumulation of chemical elements by organs of Sparganium erectum L. and their potential use in phytoremediation process. J Ecol Eng 17(1):89–100. https://doi.org/10.12911/22998993/61195

    Article  Google Scholar 

  • Pedrozo MFM, Lima IV (2001) Ecotoxicologia do cobre e seus compostos. Caderno de Referência Ambiental, Salvador

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297(5582):807–810. https://doi.org/10.1126/science.297.5582.807

    Article  CAS  Google Scholar 

  • Pradhan P, Costa L, Rybski D, Lucht W, Kropp JP (2017) A systematic study of sustainable development goal (SDG) interactions. Earth’s Future 5:1169–1179. https://doi.org/10.1002/2017EF000632

    Article  Google Scholar 

  • Rombaldi CV, Bergamasqui M, Lucchetta L, Zanuzo M, Silva JA (2004) Produtividade e qualidade de uva, cv. Isabel, em dois sistemas de produção. Rev Bras Frutic 26(1):89–91

    Article  Google Scholar 

  • Santos CF, Novak E (2013) Plantas nativas do cerrado e possibilidades em fitorremediação. Revista de Ciências Ambientais 7(1):67–77. https://doi.org/10.18316/1044

    Article  Google Scholar 

  • Santos HP, Melo GWB, Luz NB, Tomasi RJ (2004) Comportamento fisiológico de plantas de aveia (Avena strigosa) em solos com excesso de cobre. EMBRAPA Uva e Vinho, Bento Goncalves

    Google Scholar 

  • Santos CGG, Rodella AA, Abreu CA, Cscionei AR (2010) Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Sci Agric 67(6):713–719. https://doi.org/10.1590/S0103-90162010000600014

    Article  Google Scholar 

  • Sharma H (2016) Phytoremediation of lead using Brasica juncea and Vetiveria zizanoides. Int J Life Sci Res 4(1):91–96, Lucknow

    Google Scholar 

  • Soares CRFS, Accioly AMA, Marques TCLLSM, Siqueira JO, Moreira FMS (2001) Acúmulo e distribuição de metais pesados nas raízes, caule e folhas de mudas de arvores em solo contaminado por rejeitos de indústria de zinco. Rev Bras Fisiol Veg 13(3):302–315. https://doi.org/10.1590/S0103-31312001000300006

    Article  Google Scholar 

  • Sodré FF, Lenzi E, Costa ACS (2001) Utilização de modelos físico-químicos de adsorção no estudo do comportamento do cobre em solos argilosos. Revista Química Nova 24(3):324–330. https://doi.org/10.1590/S0100-40422001000300008

    Article  Google Scholar 

  • Sônego OR, Garrido LR, Grigoletti Júnior A (2005) Principais doenças fúngicas da videira no Sul do Brasil. Embrapa Uva e Vinho, Bento Gonçalves

    Google Scholar 

  • Song J, Zhao F, Luo Y, Mcgrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128(3):307–315. https://doi.org/10.1016/j.envpol.2003.09.019

    Article  CAS  Google Scholar 

  • Sonmez SS, Kaplani M, Sonmez NK, Kaya H, Uzi I (2006) High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Sci Agric 63(1):213–218. https://doi.org/10.1590/S0103-90162006000300001

    Article  CAS  Google Scholar 

  • Sousa-Aguiar EF, de Almeida JMAR, Romano PN, Fernandes RP, Carvalho Y (2014) Green chemistry: the evolution of a concept. Química Nova

    Google Scholar 

  • Strong MF (1991) ECO ’92: critical challenges and global solutions. J Int Aff 44(2):287–300

    Google Scholar 

  • Sumiahadi A, Acar R (2018) A review of phytoremediation technology: heavy metals uptake by plants. IOP Conf Ser: Earth Environ Sci 142(1):012–020. https://doi.org/10.1088/1755-1315/142/1/012023

    Article  Google Scholar 

  • Sun Y, Zhou Q, Diao D (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110. https://doi.org/10.1016/j.biortech.2007.02.035

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2009) Fisiologia Vegetal, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  • Tobiszewski M, Mechlinska A, Zygmunt B, Namie J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem 28:943–951. https://doi.org/10.1016/j.trac.2009.06.001. (Reference Ed.)

    Article  CAS  Google Scholar 

  • United Nations (2015) The millennium development goals report. New York

    Google Scholar 

  • Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338. https://doi.org/10.1111/j.1574-6976.2002.tb00618.x

    Article  CAS  Google Scholar 

  • WHO – World Health Organization (1998) Copper. Envrinmental Health Criteria 200. WHO, Geneva

    Google Scholar 

  • Woodhouse EJ, Breyman S (2016) Green chemistry as social movement? Sci Technol Hum Values 30(2):199–222

    Article  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368(1):456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016

    Article  CAS  Google Scholar 

  • Zeitouni CF, Berton RS, Abreu CA (2007) Fitoextração de cádmio e zinco de um latossolo vermelhoamarelo contaminado com metais pesados. Bragantia 66(4):649–657. https://doi.org/10.1590/S0006-87052007000400015

    Article  Google Scholar 

  • Zeremski-Škorić TM, Sekulić PD, Sekulić IV, Sekulić SI, Ninkov JM, Milić SB, Vasin JR (2010) Chelate-assisted phytoextraction: effect of EDTA and EDDS on copper uptake by Brassica napus L. J Serb Chem Soc 75:1279–1289

    Article  Google Scholar 

  • Zheng YB, Wang LP, Dixon MA (2004) Response to copper toxicity for three ornamental crops in solution culture. HortScience 39:1116–1120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evanisa Fatima Reginato Quevedo Melo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Melo, E.F.R.Q., Menegaes, J.F., Melo, R.H.R.Q. (2020). Green Chemistry for Sustainable Production and Consumption Patterns. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Responsible Consumption and Production. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71062-4_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71062-4_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71062-4

  • Online ISBN: 978-3-319-71062-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics