Skip to main content

Arbuscular Mycorrhizae, Beneficial Microorganisms for Sustainable Agriculture

  • Living reference work entry
  • First Online:
Book cover Life on Land

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root-knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4:19–23

    Google Scholar 

  • Ali MA, Naveed M, Mustafa A, Abbas A (2017) The good, the bad and the ugly of rhizosphere microbiome. In: Kumar V et al (eds) Probiotics and plant health. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-3473-2_11

    Chapter  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot (Lond) 97:925–931

    CAS  Google Scholar 

  • Altman A, Hasegawa PM (2012) Introduction to plant biotechnology 2011: basic aspects and agricultural implications. In: Plant biotechnology and agriculture: prospects for the 21st century. Elsevier/Academic Press, London, pp xxix–xxxviii

    Google Scholar 

  • Araujo JP, Quiquampoix H, Staunton S (2015) Glomalin related soil protein in French temperate forest soils: interference in Bradford assay caused by co-extracted humic substances. Eur J Soils Sci 66:311–319

    Google Scholar 

  • Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, He ZL (2017) Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci Total Environ 605–606(15):792–800

    Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta analytical and conceptual perspectives. Environ Pollut 147:609–614

    CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 15:372–396

    Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  Google Scholar 

  • Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282

    CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    CAS  Google Scholar 

  • Barea JM, Richardson AE (2015) Phosphate mobilisation by soil microorganisms. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 225–234

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    CAS  Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  Google Scholar 

  • Berlanas C, Berbegal M, Elena G, Laidani M, Cibriain JF, Sagües A, Gramaje D (2019) The fungal and bacterial Rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front Microbiol 10:1142. https://doi.org/10.3389/fmicb.2019.01142

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11–18

    CAS  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6(1-13):1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8:9–18

    Google Scholar 

  • Cardoso Filho JA, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In: Meena VS et al (eds) Agriculturally important microbes for sustainable agriculture. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-5343-6_5

    Chapter  Google Scholar 

  • Ceustermans A, Van Hemelrijck W, Van Campenhout J, Bylemans D (2018) Effect of arbuscular mycorrhizal fungi on pratylenchus penetrans infestation in apple seedlings under greenhouse conditions. Pathogens 7:76. https://doi.org/10.3390/pathogens7040076

    Article  CAS  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01270

    Article  Google Scholar 

  • Chen S, Sheng X, Qin C, Waigi M, Gao Y (2019) Glomalin-related soil protein enhances the sorption of polycyclic aromatic hydrocarbons on cation-modified montmorillonite. Environ Int 132:1–10

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Sci Total Environ 406:154–160

    CAS  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751. https://doi.org/10.1126/science.1236011

    Article  CAS  Google Scholar 

  • Dash S, Gupta N (2011) Microbial bioinoculants and their role in plant growth and development. Int J Biotech Mol Biol Res 2:232–251

    CAS  Google Scholar 

  • De la Peña C, Badri D, Loyola-Vargas V (2012) Plant root secretions and their interactions with neighbors. In: Vivanco JM, Baluška F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 1–26

    Google Scholar 

  • Ellouze W, Hamel C, Vujanovic V, Gan Y, Bouzid S, St-Arnaud M (2013) Chickpea genotypes shape the soil microbiome and affect the establishment of the subsequent durum wheat crop in the semiarid north American Great Plains. Soil Biol Biochem 63:129–141. https://doi.org/10.1016/j.soilbio.2013.04.001

    Article  CAS  Google Scholar 

  • Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16(7):356–362. https://doi.org/10.1016/j.tplants.2011.03.006

    Article  CAS  Google Scholar 

  • Fallath T, Rosli AB, Kidd B, Carvalhais LC, Schenk P (2017) Toward plant defense mechanisms against root pathogens. In: Meena VS et al (eds) Agriculturally important microbes for sustainable agriculture. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-5343-6_10

    Chapter  Google Scholar 

  • FAO (2011) Biotechnologies for agricultural development. Rome, FAO

    Google Scholar 

  • FAO (2017) The future of food and agriculture. Trends and challenges. FAO, Rome

    Google Scholar 

  • Fedoroff NV et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833. https://doi.org/10.1126/science.1186834

    Article  CAS  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67(22):6253–6265

    CAS  Google Scholar 

  • Ferrero-Holtz E, Giuffré L, Ciarlo E, Garrote Cortinez A (2018) Glomalin and its relationship with inoculation, fertilization and soils with different sand proportion. IOSR J Agric Veterin Sci 11(2):24–32

    Google Scholar 

  • Figueiredo M, Bonifacio A, Rodrigues A, de Araujo F, Stamford N (2016) Beneficial microorganisms: current challenge to increase crop performance. In: Arora NK et al (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2779-3_3

    Chapter  Google Scholar 

  • Furini A, Manara A, DalCorso G (2015) Editorial: environmental phytoremediation: plants and microorganisms at work. Front Plant Sci 6:520. https://doi.org/10.3389/fpls.2015.00520

    Article  Google Scholar 

  • Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101. https://doi.org/10.1111/j.1574-6968.2006.00412.x

    Article  CAS  Google Scholar 

  • Gao W, Wang P, Wu Q (2019) Functions and application of Glomalin-related soil proteins: a review. Sains Malaysiana 48(1):111–119. https://doi.org/10.17576/jsm-2019-4801-13

    Article  CAS  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-13921-0

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Google Scholar 

  • Hill E, Robinson LA, Abdul-Sada A, Vanbergen A, Hodge A, Hartley SE (2018) Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonization on above ground and belowground metabolomes. J Chem Ecol 44:198–208. https://doi.org/10.1007/s10886-017-0921-1

    Article  CAS  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881

    CAS  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:574. https://doi.org/10.3390/ijerph15040574

    Article  CAS  Google Scholar 

  • INVAM (2020) Analysis of Glomalin. https://invam.wvu.edu/methods/mycorrhizae/glomalin-extraction. Accessed 24 Feb 2020.

  • Jardin PD (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs. direct root exudation. New Phytol 205:1537–1551

    CAS  Google Scholar 

  • Keesstra SD et al (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2(2):111–128. https://doi.org/10.5194/soil-2-111-2016

    Article  Google Scholar 

  • Kumar S, Singh AK, Ghosh P (2018) Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Sci Total Environ 625:1341–1350

    CAS  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais H (2014) Functional soil microbiome: belowground solutions to an above ground problem. Plant Physiol 166:689–700

    CAS  Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran RG, Wenzel WW, Lombi E (eds) Trace metals in the rhizosphere. CRC Press, Boca Raton, pp 165–185

    Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    CAS  Google Scholar 

  • Lioussanne L (2010) Review. The role of the arbuscular mycorrhiza–associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8:S51–S61

    Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe–metal interactions: relevance for phytoremediation. Front Plant Sci 7:918. https://doi.org/10.3389/fpls.2016.00918

    Article  Google Scholar 

  • Ma Y (2019) Seed coating with beneficial microorganisms for precision agriculture. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.107423

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607. https://doi.org/10.1007/s00253-014-5828-y

    Article  CAS  Google Scholar 

  • Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of cu toxicity in Oenotherapicensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowasted residue. Appl Soil Ecol 48:117–124

    Google Scholar 

  • Mika T, Drigo B, Deveau A (2018) Mycorrhizal microbiomes. Mycorrhiza. https://doi.org/10.1007/s00572-018-0865-5

  • Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    CAS  Google Scholar 

  • Morel M, Castro-Sowinski S (2013) The complex molecular signaling network in microbe–plant interaction. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 169–199. https://doi.org/10.1007/978-81-322-1287-4_6

    Chapter  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  Google Scholar 

  • Narula N, Tlustos P, Szaková J (2010) Plant–microbe interaction in heavy metal contaminated soils. In: Kothe E, Varma A (eds) Bio–geo interactions in metal-contaminated soils. Springer, Berlin/Heidelberg, pp 143–162

    Google Scholar 

  • Nicholls CI, Altieri MA, Vazquez L (2016) Agroecology: principles for the conversion and redesign of farming systems. J Ecosys Ecograph S5:010. https://doi.org/10.4172/2157-7625.S5-010

    Article  Google Scholar 

  • Nobre CP, Lázaro ML, Santo MME, Pereira MG, Berbara RLL (2015) Agregação, glomalina e carbono orgânico na chapada do Araripe, Ceará, Brasil. Rev Caatinga 28:138–147

    Google Scholar 

  • Oburger E, Dell’Mour M, Hann S, Wieshammer G, Puschenreiter M, Wenzel WW (2013) Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87:235–247. https://doi.org/10.1016/j.envexpbot.2012.11.007

    Article  Google Scholar 

  • Ortas I, Rafique M (2017) The mechanisms of nutrient uptake by arbuscular mycorrhizae. In: Varma A et al (eds) Mycorrhiza – nutrient uptake, biocontrol, ecorestoration. https://doi.org/10.1007/978-3-319-68867-1_1

  • Pieterse CMJ, Zamoudis C, Berendsen RL, Weller DM, Van Wees CMS, Bakker AHMP (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  Google Scholar 

  • Prasad M, Chaudhary M, Srinivasan R, Mahawer SK (2018) Glomalin: a miracle protein for soil sustainability. Indian Farmer 5(09):1092–1100

    Google Scholar 

  • Prasad Tollamadugu, NVKV, (2019) Role of Plant Growth-Promoting Microorganisms as a Tool for Environmental Sustainability. Recent Developments in Applied Microbiology and Biochemistry. https://doi.org/10.1016/B978-0-12-816328-3.00016-7

  • Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Scient Rep 7:3940. https://doi.org/10.1038/s41598-017-04213-7

  • Qiu M, Li S, Zhou X, Cui X, Vivanco JM, Zhang N, Shen Q, Zhang R (2014) De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biol Fertil Soils. https://doi.org/10.1007/s00374-013-0835-1

  • Rashid MH, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1816. https://doi.org/10.3389/fpls.2017.01816

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    CAS  Google Scholar 

  • Rivera-Becerril F, Metwally A, Martin-Laurent F, Van Tuinen D, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular responses to cadmium in roots of Pisum sativum L. Water Air Soil Pollution 168:171–186

    CAS  Google Scholar 

  • Rocha I, Duarte I, Ma Y, Souza-Alonso P, Látr A, Vosátka M, Freitas H, Oliveira R (2019) Seed coating with arbuscular mycorrhizal fungi for improved field production of chickpea. Agronomy 9:471. https://doi.org/10.3390/agronomy9080471

    Article  CAS  Google Scholar 

  • Rodrigues Alves L, dos Reis A, Gratão P (2016) Heavy metals in agricultural soils: from plants to our daily life. Cient Jaboticabal 44(3):346–361

    Google Scholar 

  • Saritha M, Prasad Tollamadugu NVKV (2019) The status of research and application of biofertilizers and biopesticides: global scenario. Recent Dev Appl Microbiol Biochem. https://doi.org/10.1016/B978-0-12-816328-3.00015-5

  • Sharma S, Kumar Sharma A, Prasad R, Varma A (2017) Arbuscular mycorrhiza: a tool for enhancing crop production. In: Varma A et al (eds) Mycorrhiza - nutrient uptake. Biocontrol, Ecorestoration. https://doi.org/10.1007/978-3-319-68867-1_12

    Chapter  Google Scholar 

  • Shtark O, Borisov A, Zhukov V, Provorov N, Tikhonovich I (2010) Intimate associations of beneficial soil microbes with host plants. In: Dixon GR, Tilston EL (eds) Soil microbiology and sustainable crop production. Springer Science+Business Media, Dordrecht. https://doi.org/10.1007/978-90-481-9479-7_5

    Chapter  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253

    CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic press/Elsevier, Cambridge

    Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786. https://doi.org/10.3389/fpls.2015.00786

    Article  Google Scholar 

  • Sudhakaran S, Lattemann S, Amy GL (2013) Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies – a multi-criteria analysis study. Sci Total Environ 442:478–488

    CAS  Google Scholar 

  • Tarkka M, Drigo B, Deveau A (2018) Mycorrhizal microbiomes. Mycorrhiza. https://doi.org/10.1007/s00572-018-0865-5

  • Toro M, Gamarra R, López L, Infante C (2017) Arbuscular mycorrhizal fungi and the remediation of soils contaminated with hydrocarbons. In: Anjum N (ed) Chemical pollution control via microorganisms. Nova Science Publishers, Hauppauge, pp 79–96

    Google Scholar 

  • Toyota K, Watanabe T (2013) Recent trends in microbial inoculants in agriculture. Microbes Environ 28(4):403–404. https://doi.org/10.1264/jsme2.me2804rh

    Article  Google Scholar 

  • Vlček V, Pohanka M (2019) Glomalin – an interesting protein part of the soil organic matter. Soil Water Res. https://doi.org/10.17221/29/2019-SWR

  • Uroz S, Courty PE, Oger P (2019) Plant Symbionts are engineers of the plant-associated microbiome. Trends Plant Sci 24(10):905–916. https://doi.org/10.1016/j.tplants.2019.06.008

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51. https://doi.org/10.1104/pp.102.019661

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    CAS  Google Scholar 

  • Wright SF, Nichols KA (2006) Carbon and nitrogen in operationally defined soil organic matter pools. Biol Fertil Soils 43:215–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Toro .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Toro, M., Andrade, G. (2020). Arbuscular Mycorrhizae, Beneficial Microorganisms for Sustainable Agriculture. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71065-5_122-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71065-5_122-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71065-5

  • Online ISBN: 978-3-319-71065-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics