Skip to main content

Abiotic Influences on the Early Evolution of Life

  • Living reference work entry
  • First Online:
  • 222 Accesses

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

Terms and Definitions

Anoxic It means lack of oxygen in a system.

Asthenosphere It is the lower molten, viscous, and ductile mantle.

Biomarkers They represent organism-specific biocompounds preserved in the rock.

Cyanobacteria They are also known as blue-green algae and are prokaryotic microorganisms capable of oxygenic photosynthesis.

Earth dynamics It is the interplay of various earth system processes such as plate tectonics, formation of continents and oceans, weathering, erosion, and sedimentation.

Eukarya/eukaryotes They represent one of the three domains of life, the others being Bacteria and Archaea. Eukaryotes represent complex life, exhibiting cellular complexity such as cell nucleus, cell membrane, and cell organelles.

Extrusive and intrusive rocks Lava are extrusive rocks crystallizing from molten material exuded out on the surface of the earth. Magma are intrusive rocks that crystallize from the same molten material within the crust.

Gene duplicationIt is a process that...

This is a preview of subscription content, log in via an institution.

References

  • Aguirre J, Ríos-Momberg M et al (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118

    Article  CAS  Google Scholar 

  • Akanuma S (2017) Characterization of reconstructed ancestral proteins suggests a change in temperature of the ancient biosphere. Lifestyles 7(3):33

    Google Scholar 

  • Akanuma S, Yokobori S et al (2015) Robustness of predictions of extremely thermally stable proteins in ancient organisms. Evolution 69(11):2954–2962

    Article  CAS  Google Scholar 

  • Angilletta M (2006) Estimating and comparing thermal performance curves. J Therm Biol 31(7):541–545

    Article  Google Scholar 

  • Barkay T, Kritee K et al (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol 12(11):2904–2917

    Article  CAS  Google Scholar 

  • Baudisch O (1943) The importance of trace elements in biological activity. Am Sci 31(3):211–240

    CAS  Google Scholar 

  • Bengtson S, Sallstedt T et al (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol 15(3):e2000735

    Article  CAS  Google Scholar 

  • Blamey N, Brand U et al (2016) Paradigm shift in determining neoproterozoic atmospheric oxygen. Geology 44(8):651–654

    Article  CAS  Google Scholar 

  • Bopp L, Resplandy L et al (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10(10):6225–6245

    Article  Google Scholar 

  • Boussau B, Blanquart S et al (2008) Parallel adaptations to high temperatures in the Archaean eon. Nature 456(7224):942–945

    Article  CAS  Google Scholar 

  • Brune A, Frenzel P et al (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24(5):691–710

    Article  CAS  Google Scholar 

  • Bulte G, Blouin-Demers G (2006) Cautionary notes on the descriptive analysis of performance curves in reptiles. J Therm Biol 31(4):287–291

    Article  Google Scholar 

  • Butterfield N (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26(3):386–404

    Article  Google Scholar 

  • Butterfield N (2015) Early evolution of the eukaryota. Palaeontology 58(1):5–17

    Article  Google Scholar 

  • Cardona T (2019) Thinking twice about the evolution of photosynthesis. Open Biol 9(3):180246

    Article  CAS  Google Scholar 

  • Corkrey R, Olley J et al (2012) Universality of thermodynamic constants governing biological growth rates. PLoS One 7(2):e32003

    Article  CAS  Google Scholar 

  • Corkrey R, McMeekin T et al (2014) Protein thermodynamics can be predicted directly from biological growth rates. PLoS One 9(5):e96100

    Article  CAS  Google Scholar 

  • Corkrey R, McMeekin T et al (2016) The biokinetic Spectrum for temperature. PLoS One 11(4):e0153343

    Article  CAS  Google Scholar 

  • Corkrey R, McMeekin T et al (2018) The maximum growth rate of life on earth. Int J Astrobiol 17(1):17–33

    Article  Google Scholar 

  • Damer B, Deamer D (2019) The hot spring hypothesis for an origin of life. Astrobiology 20(4):429–452

    Article  Google Scholar 

  • Danovaro R, Dell'Anno A et al (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8(1):30

    Article  CAS  Google Scholar 

  • Daubin V, Szöllősi G (2016) Horizontal gene transfer and the history of life. Cold Spring Harb Perspect Biol 8(4):a018036

    Article  CAS  Google Scholar 

  • de Wit M, Furnes H (2016) 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments. Sci Adv 2(2):e1500368

    Article  CAS  Google Scholar 

  • Dhuime B, Hawkesworth C et al (2017) Continental growth seen through the sedimentary record. Sediment Geol 357:16–32

    Article  CAS  Google Scholar 

  • Dodd M, Papineau D et al (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643):60–64

    Article  CAS  Google Scholar 

  • Elias M, Wieczorek G et al (2014) The universality of enzymatic rate – temperature dependency. Trends Biochem Sci 39(1):1–7

    Article  CAS  Google Scholar 

  • Erwin D, Laflamme M et al (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334(6059):1091–1097

    Article  CAS  Google Scholar 

  • Fralick P, Carter J (2011) Neoarchean deep marine paleotemperature: evidence from turbidite successions. Precambrian Res 191(1–2):78–84

    Article  CAS  Google Scholar 

  • Gadd G (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  • Galtier N, Tourasse N et al (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283(5399):220–221

    Article  CAS  Google Scholar 

  • Garcia A, Schopf J et al (2017) Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean. Proc Natl Acad Sci 114(18):4619–4624

    Article  CAS  Google Scholar 

  • Gaucher E, Thomson J et al (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425(6955):285–288

    Article  CAS  Google Scholar 

  • Gaucher E, Govindarajan S et al (2008) Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451(7179):704–707

    Article  CAS  Google Scholar 

  • Gumienna-Kontecka E, Rowińska-Żyrek M et al (2018) The role of trace elements in living organisms. In: Recent Advances in Trace Elements. Wiley Blackwell, Chichester, pp 177–206

    Chapter  Google Scholar 

  • Hamilton II, John W (1973) Life’s color code. McGraw-Hill, New York

    Google Scholar 

  • Henderson L (1913) The fitness of the environment, an inquiry into the biological significance of the properties of matter. Am Nat 47(554):105–115

    Article  Google Scholar 

  • Hobbs J, Shepherd C et al (2012) On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of bacillus. Mol Biol Evol 29(2):825–835

    Article  CAS  Google Scholar 

  • Hochachka P, Somero G (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Hoffmann A, Chown S et al (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27(4):934–949

    Article  Google Scholar 

  • Hren M, Tice M et al (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature 462(7270):205

    Article  CAS  Google Scholar 

  • Javaux E, Knoll A (2017) Micropaleontology of the lower Mesoproterozoic roper group, Australia, and implications for early eukaryotic evolution. J Paleontol 91(2):199–229

    Article  Google Scholar 

  • Javaux E, Knoll A et al (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33(1):75–94

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley D (2003) Extending the upper temperature limit for life. Science 301(5635):934

    Article  CAS  Google Scholar 

  • Kasting J, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc B 361(1470):917–929

    Article  CAS  Google Scholar 

  • Katz L (2012) Origin and diversification of eukaryotes. Annu Rev Microbiol 66:411–427

    Article  CAS  Google Scholar 

  • Keeling P, Palmer J (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9(8):605–618

    Article  CAS  Google Scholar 

  • Keilin D, Mann T (1939) Carbonic anhydrase. Nature 144(3644):442–443

    Article  CAS  Google Scholar 

  • Knauth L (2005) Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219(1):53–69

    Article  Google Scholar 

  • Knauth L, Lowe D (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115(5):566–580

    Article  CAS  Google Scholar 

  • Knoll A (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb Perspect Biol 6(1):a016121

    Article  CAS  Google Scholar 

  • Kobayashi K, Ponnamperuma C (1985) Trace elements in chemical evolution, I. Orig Life Evol Biosph 16(1):41–55

    Article  CAS  Google Scholar 

  • Krenek S, Petzoldt T et al (2012) Coping with temperature at the warm edge – patterns of thermal adaptation in the microbial eukaryote Paramecium caudatum. PLoS One 7(3):e30598

    Article  CAS  Google Scholar 

  • Krissansen-Totton J, Arney G et al (2018) Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc Natl Acad Sci 115:4105–4110

    Article  CAS  Google Scholar 

  • Lai S, Safaei J et al (2016) Evolutionary ancestry of eukaryotic protein kinases and choline kinases. J Biol Chem 291(10):5199–5205

    Article  CAS  Google Scholar 

  • Large R, Mukherjee I et al (2019) Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineral Deposita 54(4):485–506

    Article  CAS  Google Scholar 

  • Levy M, Miller S et al (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145(2):609–613

    Article  CAS  Google Scholar 

  • Locey K, Lennon J (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113(21):5970–5975

    Article  CAS  Google Scholar 

  • Lyons T, Reinhard C et al (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315

    Article  CAS  Google Scholar 

  • Malaterre C (2015) Chemical evolution and life. In: BIO Web of Conferences. Vol. 4. p2. EDP Sciences

    Google Scholar 

  • Maret W (2016) The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 17(1):66

    Article  CAS  Google Scholar 

  • Martin T, Huey R (2008) Why “suboptimal” is optimal: Jensen's inequality and ectotherm thermal preferences. Am Nat 171(3):E102–E118

    Article  Google Scholar 

  • Merino N, Aronson H et al (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780

    Article  Google Scholar 

  • Miller S (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  CAS  Google Scholar 

  • Mills D, Ward L et al (2014) Oxygen requirements of the earliest animals. Proc Natl Acad Sci 111(11):4168–4172

    Article  CAS  Google Scholar 

  • Morel F, Price N (2003) The biogeochemical cycles of trace metals in the oceans. Science 300(5621):944–947

    Article  CAS  Google Scholar 

  • Morley S, Martin S et al (2012) Thermal reaction norms and the scale of temperature variation: latitudinal vulnerability of intertidal Nacellid limpets to climate change. PLoS One 7(12):e52818

    Article  CAS  Google Scholar 

  • Mukherjee I, Large R et al (2018) The boring billion, a slingshot for complex life on earth. Sci Rep 8(4432):1–7

    Google Scholar 

  • Mykytczuk N, Foote S et al (2013) Bacterial growth at −15°C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. The ISME J 7(6):1211–1226

    Article  CAS  Google Scholar 

  • Nisbet E, Sleep N (2001) The habitat and nature of early life. Nature 409(6823):1083–1091

    Article  CAS  Google Scholar 

  • Noll P, Lilge L et al (2020) Modeling and exploiting microbial temperature response. Processes 8(1):121

    Article  CAS  Google Scholar 

  • O'Leary M (2008) Anaxagoras and the origin of panspermia theory. iUniverse publishing group, New York

    Google Scholar 

  • Planavsky N, Reinhard C et al (2014) Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346(6209):635–638

    Article  CAS  Google Scholar 

  • Porter S (2004) The fossil record of early eukaryotic diversification. Paleontol Soc Paper 10:35–50

    Article  Google Scholar 

  • Ravaux J, Hamel G et al (2013) Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm. PLoS One 8(5):e64074

    Article  CAS  Google Scholar 

  • Reimann C, Caritat D (1998) Chemical elements in the environment. Factsheets for the geochemist and environmental scientist. Springer, Berlin, Heidelberg, 398p

    Google Scholar 

  • Robert F, Chaussidon M (2006) A palaeotemperature curve for the precambrian oceans based on silicon isotopes in cherts. Nature 443(7114):969–972

    Article  CAS  Google Scholar 

  • Ruiz-Mirazo K, Briones C et al (2017) Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol 7(4):170050

    Article  Google Scholar 

  • Russell M, Hall A (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154(3):377–402

    Article  CAS  Google Scholar 

  • Sheldon N (2013) Causes and consequences of low atmospheric pCO2 in the late mesoproterozoic. Chem Geol 362:224–231

    Article  CAS  Google Scholar 

  • Takai K, Nakamura K et al (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci 105(31):10949–10954

    Article  CAS  Google Scholar 

  • Tartèse R, Chaussidon M et al (2016) Warm Archaean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem Perspect Lett 3(1):55–65

    Google Scholar 

  • Tashiro T, Ishida A et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549(7673):516–518

    Article  Google Scholar 

  • Wackett L, Dodge A et al (2004) Microbial genomics and the periodic table. Appl Environ Microbiol 70(2):647–655

    Article  CAS  Google Scholar 

  • Woese C, Kandler O et al (1990) Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87(12):4576–4579

    Article  CAS  Google Scholar 

  • Wolfenden R, Snider M (2001) The depth of chemical time and the power of enzymes as catalysts. Acc Chem Res 34(12):938–945

    Article  CAS  Google Scholar 

  • Zhang Y, Gladyshev V (2011) Comparative genomics of trace element dependence in biology. J Biol Chem 286(27):23623–23629

    Article  CAS  Google Scholar 

  • Zhang Y, Rodionov D et al (2009) Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 10(1):78

    Article  CAS  Google Scholar 

  • Zhang L, Su F et al (2016) Ratiometric fluorescent pH-sensitive polymers for high-throughput monitoring of extracellular pH. RSC Adv 6(52):46134–46142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Corkrey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mukherjee, I., Corkrey, R. (2020). Abiotic Influences on the Early Evolution of Life. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71065-5_130-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71065-5_130-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71065-5

  • Online ISBN: 978-3-319-71065-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics