Skip to main content

Mountain Biodiversity and Sustainable Development

  • Living reference work entry
  • First Online:
Life on Land

Definitions

The transition from lowland plains to mountain terrain is usually gradual. Thus, the definition of mountains is necessarily conventional. The United Nations Environment Program – World Conservation Monitoring Centre adopts a lower limit of 300 m in combination with slope thresholds. According to this definition, mountains occupy about 23% of the global land area. Other definitions use lower limits that change according to the latitude (e.g., 1,000 m at the equator) or are based on a combination of geographical and climatic criteria (Körner and Ohsawa 2005; Körner and Paulsen 2010).

In ecological terms, the expression “alpine vegetation” refers to vegetation forms above the climate tree line, independently from their geographical location (Körner 2003).

Introduction

Mountains host a high biodiversity concentrated in small spaces. High altitude areas are not only home to endemics, but, due to their inhospitability to man, play a pivotal role as refuges for lowland...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Catalan J, Ninot J, Aniz M (eds) (2017) High mountain conservation in a changing world. Advances in global change research, vol 62. Springer, Cham

    Google Scholar 

  • Cerrato C, Rocchia E, Brunetti M, Bionda R, Bassano B, Provenzale A, Bonelli S, Viterbi R (2019) Butterfly distribution along altitudinal gradients: temporal changes over a short time. Nat Conserv 34:91–118. https://doi.org/10.3897/natureconservation.34.30728

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045): 1024–1026. https://doi.org/10.1126/science.1206432

    Article  CAS  Google Scholar 

  • Cowie J (2013) Climate change. Biological and human aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467(7318):959–962. https://doi.org/10.1038/nature09439

    Article  CAS  Google Scholar 

  • Duivenvoorden JF, Cuello NL (2012) Functional trait state diversity of Andean forests in Venezuela changes with altitude. J Veg Sci 23(6):1105–1113. https://doi.org/10.1111/j.1654-1103.2012.01428.x

    Article  Google Scholar 

  • Fattorini S (2007) Historical relationships of African mountains based on cladistic analysis of distributions and endemism of flightless insects. Afr Entomol 15(2):340–355. https://doi.org/10.4001/1021-3589-15.2.340

    Article  Google Scholar 

  • Fattorini S (2014a) Disentangling the effects of available area, mid-domain constraints, and species environmental tolerance on the altitudinal distribution of tenebrionid beetles in a Mediterranean area. Biodivers Conserv 16(10):2531–2538. https://doi.org/10.1007/s10531-014-0738-y

    Article  Google Scholar 

  • Fattorini S (2014b) Tenebrionid beetle distributional patterns in Italy: multiple colonization trajectories in a biogeographical crossroad. Insect Conserv Diver 7(2):144–160. https://doi.org/10.1111/icad.12042

    Article  Google Scholar 

  • Fattorini S, Di Biase L, Chiarucci A (2019) Recognizing and interpreting vegetational belts: new wine in the old bottles of a von Humboldt’s legacy. J Biogeogr 46(8):1643–1651. https://doi.org/10.1111/jbi.13601

    Article  Google Scholar 

  • Fattorini S, Mantoni C, Di Biase L, Strona G, Pace L, Biondi M (2020) Elevational patterns of generic diversity in the tenebrionid beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity 12(2):47. https://doi.org/10.3390/d12020047

    Article  Google Scholar 

  • Guppy CS (1986) The adaptive significance of Alpine melanism in the butterfly Parnassius phoebus F. (Lepidoptera: Papilionidae). Oecologia 70:205–213. https://doi.org/10.1007/BF00379241

    Article  CAS  Google Scholar 

  • Hall JPW (2005) Montane speciation patterns in Ithomiola butterflies (Lepidoptera: Riodinidae): are they consistently moving up in the world? Proc R Soc B 272(1580):2457–2466. https://doi.org/10.1098/rspb.2005.3254

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Hilty JA, Chester CC, Cross MS (eds) (2012) Climate and conservation: landscape and seascape science, planning, and action. Island Press, Washington, DC

    Google Scholar 

  • Hodd RL, Skeffington MS (2011) Climate change and oceanic mountain vegetation: a case study of the montane heath and associated plant communities in western Irish mountains. In: Hodkinson TR, Jones MB, Waldren S, Parnell JAN (eds) Climate change, ecology and systematics. Cambridge University Press, Cambridge, pp 490–515

    Chapter  Google Scholar 

  • Ives JD, Barry RG (eds) (1974) Arctic and alpine environments. Methuen, London

    Google Scholar 

  • Kichenin E, Wardle DA, Peltzer DA, Morse CV, Freschet GT (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261. https://doi.org/10.1111/1365-2435.12116

    Article  Google Scholar 

  • Kluge J, Kessler M (2011) Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica. Plant Ecol 212(7):1109–1121. https://doi.org/10.1007/s11258-010-9891-x

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes RJ, Ash N (eds) Ecosystems and human wellbeing. Current state and trends: findings of the condition and trends working group. Millennium ecosystem assessment, vol 1. Island Press, Washington, DC, pp 681–716

    Google Scholar 

  • Körner C, Paulsen J (2010) Exploring and explaining mountain biodiversity. In: Spehn EM, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press Taylor and Francis Group, Boca Raton, pp 1–10

    Google Scholar 

  • Laiolo P, Obeso JR (2017) Life-history responses to the altitudinal gradient. In: Catalan J, Ninot J, Aniz M (eds) High Mountain conservation in a changing world. Advances in global change research, vol 62. Springer, Cham, pp 253–283

    Chapter  Google Scholar 

  • Lavorel S, Gachet S, Sahl A, Colace M-P, Gaucherand S, Burylo M, Bonet R (2010) A plant functional traits database for the Alps–Application to the understanding of functional effects of changed grassland management. In: Spehn EM, Körner C (eds) Data mining for global trends in mountain biodiversity. CRC Press Taylor and Francis Group, Boca Raton, pp 107–123

    Google Scholar 

  • Lenoir J, Gégout JC, Marque PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771. https://doi.org/10.1126/science.1156831

    Article  CAS  Google Scholar 

  • MacKinnon K, Platais G, Sobrevila C, Leakey S, Morgan G, Whitten T, Brylski P, Bromhead M-A, Agostini P (2002) Conservation of biodiversity in mountain ecosystems: at a glance (English). World Bank, Washington, DC. http://documents.worldbank.org/curated/en/425451468782158659/pdf/270320Conserva10Ecosystems01public1.pdf

    Google Scholar 

  • Mani MS (1968) Ecology and biogeography of high altitude insects. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  • Merckx T, Huertas B, Basset Y, Thomas JA (2013) A global perspective on conserving butterflies and moth and their habitats. In: Macdonald DW, Willis K (eds) Key topics in conservation biology 2. Wiley-Blackwell, Oxford, pp 239–257

    Google Scholar 

  • Messerli B, Viviroli D, Weingartner R (2004) Mountains of the world – vulnerable water towers for the 21st century. Ambio 13:29–34. https://doi.org/10.5167/uzh-110516

    Article  Google Scholar 

  • Montejo-Kovacevich G, Smith JE, Meier JI, Bacquet CN, Whiltshire-Romero E, Nadeau NJ, Jiggins CD (2019) Altitude and life– history shape the evolution of Heliconius wings. Evolution 73:2436–2450. https://doi.org/10.1111/evo.13865

    Article  Google Scholar 

  • Moradi H, Fattorini S, Oldeland J (2020) Influence of elevation on the species–area relationship. J Biogeogr. https://doi.org/10.1111/jbi.13851

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899):261–264. https://doi.org/10.1126/science.1163428

    Article  CAS  Google Scholar 

  • Nevado B, Contreras-Ortiz N, Hughes C, Filatov DA (2018) Pleistocene glacial cycles drive isolation, gene flow and speciation in the high–elevation Andes. New Phytol 219(2):779–793. https://doi.org/10.1111/nph.15243

    Article  Google Scholar 

  • Nogué S, Rull V, Vegas-Vilarrúbia T (2009) Modeling biodiversity loss by global warming on Pantepui, northern South America: projected upward migration and potential habitat loss. Clim Chang 94:77–85. https://doi.org/10.1007/s10584-009-9554-x

    Article  Google Scholar 

  • Quintero I, Jetz W (2018) Global elevational diversity and diversification of birds. Nature 555:246–250. https://doi.org/10.1038/nature25794

    Article  CAS  Google Scholar 

  • Ray C, Beever E, Loarie S (2012) Retreat of the American pika: up to the mountain or into the void? In: Brodie JF, Post E, Doak DF (eds) Wildlife conservation in a changing climate. University of Chicago Press, Chicago, pp 245–270

    Google Scholar 

  • Reguera S, Zamora-Camacho FJ, Moreno-Rueda G (2014) The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol J Linn Soc 112(1):132–141. https://doi.org/10.1111/bij.12250

    Article  Google Scholar 

  • Roff DA (1990) The evolution of flightlessness in insects. Ecol Monogr 60(4):389–421. https://doi.org/10.2307/1943013

    Article  Google Scholar 

  • Rubridge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Chang 2:285–288. https://doi.org/10.1038/nclimate1415

    Article  Google Scholar 

  • Schmitt T (2017) Molecular biogeography of the high mountain systems of Europe: an overview. In: Catalan J, Ninot J, Aniz M (eds) High mountain conservation in a changing world. Advances in global change research, vol 62. Springer, Cham, pp 63–74

    Chapter  Google Scholar 

  • Schmitt T, Muster C, Schönswetter P (2010) Are disjunct Alpine and Arctic-Alpine animal and plant species in the Western Palearctic really “Relics of a Cold Past”? In: Habel JC, Assmann T (eds) Relict species: phylogeography and conservation biology. Springer, Heidelberg, pp 239–252

    Chapter  Google Scholar 

  • Spehn EM, Liberman M, Körner C (eds) (2006) Land use change and mountain biodiversity. CRC Press Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Streb P, Cornic G, Bligny R (2020) How do plants cope with alpine stress? Encyclopedia of the environment [online ISSN 2555-0950]. https://www.encyclopedie-environnement.org/en/life/how-do-plants-cope-with-alpine-stress/. Accessed 2 Apr 2020

  • Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proc R Soc B 278:877–884. https://doi.org/10.1098/rspb.2010.1369

    Article  Google Scholar 

  • Thaler K (2003) The diversity of high altitude arachnids (Araneae, Opiliones, Pseudoscorpiones) in the Alps. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 281–296

    Chapter  Google Scholar 

  • Tobias J, Sekercioglu CH, Vargas FH (2013) Bird conservation in tropical ecosystems: challenges and opportunities. In: Macdonald DW, Willis K (eds) Key topics in conservation biology 2. Wiley-Blackwell, Oxford, pp 258–276

    Chapter  Google Scholar 

  • Troll C (1959) Die tropischen Gebirge. Ihre dreidimensionale klimatische und pflanzengeographische Zonierung. Bonn Geogr Abh 25:1–95

    Google Scholar 

  • Varga ZS, Schmitt T (2008) Types of oreal and oreotundral disjunctions in the western Palearctic. Biol J Linn Soc 93(2):415–430. https://doi.org/10.1111/j.1095-8312.2007.00934.x

    Article  Google Scholar 

  • Worboys GL, Francis WL, Lockwood M (eds) (2010) Connectivity conservation management. Routledge, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fattorini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fattorini, S., Mantoni, C., Di Biase, L., Pace, L. (2020). Mountain Biodiversity and Sustainable Development. In: Leal Filho, W., Azul, A., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71065-5_144-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71065-5_144-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71065-5

  • Online ISBN: 978-3-319-71065-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics