Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Abrupt Climate Change Modeling

  • Gerrit LohmannEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_1-5

Definition of the Subject and Its Importance

The occurrence of abrupt change of climate at various time scales has attracted a great deal of interest for its theoretical and practical significance (Berger and Labeyrie 1987; Alley et al. 2002; Alverson and Oldfield 2000). To some extent, a definition of what constitutes an abrupt climatic change depends on the sampling interval of the data being examined (Fu et al. 1999). For the instrumental period covering approximately the last 100 years of annually or seasonally sampled data, an abrupt change in a particular climate variable will be taken to mean a statistically highly significant difference between adjacent 10-year sample means. In the paleoclimate context (i.e., on long time scales), an abrupt climate change can be in the order of decades to thousands of years. Since the climate dynamics can be often projected onto a limited number of modes or patterns of climate variability (e.g., Dima and Lohmann 2002, 2007), the definition of...


Stochastic Resonance Wavelet Spectrum Abrupt Climate Autocovariance Function Abrupt Climate Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. Alley RB, Anandakrishnan S, Jung P (2001) Stochastic resonance in the North Atlantic. Paleoceanography 16:190–198ADSCrossRefGoogle Scholar
  2. Alley RB, Marotzke J, Nordhaus W, Overpeck J, Peteet D, Pielke R Jr, Pier-rehumbert R, Rhines P, Stocker T, Talley L, Wallace JM, US National Academy of Sciences, National Research Council Committee on Abrupt Climate Change (2002) Abrupt climate change: inevitable surprises. National Academy Press, Washington, DCGoogle Scholar
  3. Alverson K, Oldfield F (2000) Abrupt climate change. A joint newsletter of the Past Global Changes Project (PAGES) and the Climate Variability and Predictability Project (CLIVAR) 8(1):7–10Google Scholar
  4. Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnonk J-M (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348ADSCrossRefGoogle Scholar
  5. Bartoli G, Sarnthein M, Weinelt M, Erlenkeuser H, Garbe-Schönberg D, Lea DW (2005) Final closure of Panama and the onset of northern hemisphere glaciation. Earth Planet Sci Lett 237:33–44ADSCrossRefGoogle Scholar
  6. Bender M, Malaize B, Orchardo J, Sowers T, Jouzel J (1999) High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr. In: Clark P et al (eds) Mechanisms of global climate change, vol 112. AGU, Washington, DC, pp 149–164Google Scholar
  7. Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34:10ADSCrossRefGoogle Scholar
  8. Berger WH, Labeyrie LD (1987) Abrupt climatic change, evidence and implications, vol 216, NATO ASI series, Series C, Mathematical and physical sciences. D Reidel, Dordrecht, 425 ppCrossRefGoogle Scholar
  9. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317ADSCrossRefGoogle Scholar
  10. Broecker WS et al (1985) Does the ocean–atmosphere system have more than one stable mode of operation? Nature 315:21–26ADSCrossRefGoogle Scholar
  11. Bryan F (1986) High latitude salinity effects and inter-hemispheric thermohaline circulations. Nature 323:301–304ADSCrossRefGoogle Scholar
  12. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynam 18:579–586ADSCrossRefGoogle Scholar
  13. CLIMAP project members (1976) The surface of the ice age Earth. Science 191:1131–1137ADSCrossRefGoogle Scholar
  14. Coxall HK, Wilson PA, Palike H, Lear CH, Backman J (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57. doi:10.1038/nature03135ADSCrossRefGoogle Scholar
  15. Crowley TJ (1992) North Atlantic deep water cools the southern hemisphere. Paleoceanography 7:489–497ADSCrossRefGoogle Scholar
  16. Daubechies I (1992) Ten lectures on wavelets. Society for industrial and applied mathematics. SIAM, Philadelphia. ISBN 9780898712742CrossRefGoogle Scholar
  17. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249. doi:10.1038/nature01290ADSCrossRefGoogle Scholar
  18. DeMenocal P et al (2000) Abrupt onset and termination of the African Humid Period: rapid climate response to gradual insolation forcing. Quat Sci Rev 19:347–361ADSCrossRefGoogle Scholar
  19. Diaz HF, Quayle RG (1980) The climate of the United States since 1895: spatial and temporal changes. Mon Weather Rev 108:149–226Google Scholar
  20. Dijkstra HA, Te Raa L, Weijer W (2004) A systematic approach to determine thresholds of the ocean’s thermohaline circulation. Tellus A 56(4):362ADSCrossRefGoogle Scholar
  21. Dima M, Lohmann G (2002) Fundamental and derived modes of climate variability. Application to biennial and interannual timescale. Tellus 56A:229–249ADSGoogle Scholar
  22. Dima M, Lohmann G (2007) A hemispheric mechanism for the atlantic multidecadal oscillation. J Climate 20:2706–2719ADSCrossRefGoogle Scholar
  23. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198. doi:10.1038/nature05301ADSCrossRefGoogle Scholar
  24. Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dry as event and deep-ocean circulation. Nature 342:637–642ADSCrossRefGoogle Scholar
  25. Flohn H (1986) Singular events and catastrophes now and in climatic history. Naturwissenschaften 73:136–149ADSCrossRefGoogle Scholar
  26. Fu C, Diaz HF, Dong D, Fletcher JO (1999) Changes in atmospheric circulation over northern hemisphere oceans associated with the rapid warming of the 1920s. Int J Climatol 19(6):581–606CrossRefGoogle Scholar
  27. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158ADSCrossRefGoogle Scholar
  28. Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Let 88(3):038501ADSCrossRefGoogle Scholar
  29. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation-atmosphere–ocean interaction on climate during the mid-Holocene. Science 280:1916ADSCrossRefGoogle Scholar
  30. Hasselmann K (1976) Stochastic climate models, Part 1, theory. Tellus 28:289–485CrossRefGoogle Scholar
  31. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132ADSCrossRefGoogle Scholar
  32. Henderson GM, Slowey NC (2000) Evidence from U-Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404:61–66ADSCrossRefGoogle Scholar
  33. Huybers P, Wunsch C (2005) Obliquity pacing of the late Pleistocene glacial terminations. Nature 434:491–494. doi:10.1038/nature03401ADSCrossRefGoogle Scholar
  34. Imbrie J, Imbrie JZ (1980) Modeling the climatic response to orbital variations. Science 207:943–953ADSCrossRefGoogle Scholar
  35. IPCC (2007) Climate change 2007: the physical basis – summary for policymakers. See http://www.ipcc.ch/SPM2feb07.pdf
  36. Iwashima T, Yamamoto R (1986) Time-space spectral model of low order barotropic system with periodic forcing. J Meterol Soc Jpn 64:183–196Google Scholar
  37. Kennett JP, Houtz RE, Andrews PB, Edwards AE, Gostin VA, Hajos M, Hampton M, Jenkins DG, Margolis SV, Ovenshine AT, Perch-Nielsen K (1974) Development of the circum-Antarctic current. Science 186:144–147ADSCrossRefGoogle Scholar
  38. Knorr G, Lohmann G (2003) Southern ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424:532–536ADSCrossRefGoogle Scholar
  39. Knorr G, Lohmann G (2007) Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem Geophys Geosyst 8(12):Q12006, 1–22. doi:10.1029/2007GC001604CrossRefGoogle Scholar
  40. Kwasniok F, Lohmann G (2009) Underlying dynamics of glacial millennial- scale climate transitions derived from ice-core data. Phys Rev E 80(6):066104. doi:10.1103/PhysRevE.80.066104ADSCrossRefGoogle Scholar
  41. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeocl 198:11–37. doi:10.1016/S0031-0182(03)00392-4CrossRefGoogle Scholar
  42. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793. doi:10.1073/pnas.0705414105ADSCrossRefzbMATHGoogle Scholar
  43. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic O-18 records. Paleoceanography 20, PA1003. doi:10.1029/2004PA001071ADSGoogle Scholar
  44. Lohmann G (2003) Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus 55A:438–449ADSCrossRefGoogle Scholar
  45. Lohmann G, Gerdes R (1998) Sea ice effects on the sensitivity of the Thermohaline circulation in simplified atmosphere–ocean-sea ice models. J Climate 11:2789–2803ADSCrossRefGoogle Scholar
  46. Lohmann G, Schneider J (1999) Dynamics and predictability of Stommel’s box model: a phase space perspective with implications for decadal climate variability. Tellus 51A:326–336ADSCrossRefGoogle Scholar
  47. Lohmann G, Schulz M (2000) Reconciling Boelling warmth with peak deglacial meltwater discharge. Paleoceanography 15:537–540ADSCrossRefGoogle Scholar
  48. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141ADSCrossRefGoogle Scholar
  49. Lorenz EN (1976) Nondeterministic theories of climatic change. Quat Res 6:495–506CrossRefGoogle Scholar
  50. Lorenz EN (1982) Atmospheric predictability experiments with a large numerical model. Tellus 34:505–513ADSCrossRefGoogle Scholar
  51. Lorenz EN (1990) Can chaos and intransitivity lead to interannual variability? Tellus 42A:378–389ADSCrossRefGoogle Scholar
  52. Lorenz S, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere–ocean circulation model: method and application for the Holocene. Climate Dyn 23(7–8):727–743. doi:10.1007/s00382-004-0469-yADSCrossRefGoogle Scholar
  53. Lund R, Reeves J (2002) Detection of undocumented change points: a revision of the two-phase regression model. J Climate 15:2547–2554ADSCrossRefGoogle Scholar
  54. Manabe S, Stouffer RJ (1993) Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature 364:215–218ADSCrossRefGoogle Scholar
  55. Maraun D, Kurths J (2004) Cross wavelet analysis. Significance testing and pitfalls. Nonlin Proc Geoph 11:505–514ADSCrossRefGoogle Scholar
  56. Maraun D, Kurths J (2005) Epochs of phase coherence between El Nino/Southern Oscillation and Indian monsoon. Geophys Res Lett 32, L15709. doi:10.1029/2005GL023225ADSCrossRefGoogle Scholar
  57. Maslin MA, Ridgewell A (2005) Mid-pleistocene revolution and the eccentricity myth. Spec Publ Geol Soc Lond 247:19–34CrossRefGoogle Scholar
  58. Maslin MA, Li X-S, Loutre M-F, Berger A (1998) The contribution of orbital forcing to the progressive intensification of Northern Hemisphere Glaciation. Quat Sci Rev 17:411–426ADSCrossRefGoogle Scholar
  59. Milankovitch M (1941) Kanon der Erdbestrahlung. Royal Serb Acad Spec Publ, Belgrad, 132, Sect Math Nat Sci 33Google Scholar
  60. Mori H (1965) A continued-fraction representation of the time-correlation functions. Progr Theor Phys 33:423–455. doi:10.1143/PTP.34.399ADSCrossRefzbMATHGoogle Scholar
  61. North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  62. Paillard D (1998) The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391:378–381ADSCrossRefGoogle Scholar
  63. Palmer TN (1996) Predictability of the atmosphere and oceans: from days to decades. In: Anderson DTA, Willebrand J (eds) Large-scale transport processes in oceans and atmosphere, NATO ASI series 44. Springer, Berlin, pp 83–155Google Scholar
  64. Parker DE, Jones PD, Folland CK, Bevan A (1994) Interdecadal changes of surface temperature since the late nineteenth century. J Geophys Res 99:14,373–14,399ADSCrossRefGoogle Scholar
  65. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York, p 520. ISBN 0-88318-712-4Google Scholar
  66. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436ADSCrossRefGoogle Scholar
  67. Raymo M, Ganley K, Carter S, Oppo DW, McManus J (1998) Millennial-scale climate instability during the early Pleistocene epoch. Nature 392:699–701ADSCrossRefGoogle Scholar
  68. Reddy SC, Schmidt P, Henningson D (1993) Pseudospectra of the Orr-Sommerfeld operator. SIAM J Appl Math 53:15–47CrossRefzbMATHMathSciNetGoogle Scholar
  69. Rial JA (1999) Pacemaking the ice ages by frequency modulation of earth’s orbital eccentricity. Science 285:564–568CrossRefGoogle Scholar
  70. Rial JA (2004) Abrupt climate change: chaos and order at orbital and millennial scales. Glob Plan Change 41:95–109ADSCrossRefGoogle Scholar
  71. Ridgwell AJ, Watson AJ, Raymo ME (1999) Is the spectral signature of the 100 Kyr glacial cycle consistent with a Milankovitch origin? Paleoceanography 14:437–440ADSCrossRefGoogle Scholar
  72. Rogers JC (1985) Atmospheric circulation changes associated with the warming over the northern North Atlantic in the 1920s. J Clim Appl Meteorol 24:1303–1310ADSCrossRefGoogle Scholar
  73. Saltzman B (2002) Dynamical paleoclimatology. Generalized theory of global climate change, vol 80, International geophysics series. Harcourt-Academic Press, San Diego, 354 ppGoogle Scholar
  74. Schulz M, Paul A, Timmermann A (2004) Glacial-interglacial contrast in climate variability at centennial-to-millennial timescales: observations and conceptual model. Quatr Sci Rev 23:2219ADSCrossRefGoogle Scholar
  75. Seidel DJ, Lanzante JR (2004) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J Geophys Res 109, D14108. doi:10.1029/2003JD004414ADSCrossRefGoogle Scholar
  76. Stocker TF (1998) The seesaw effect. Science 282:61–62CrossRefGoogle Scholar
  77. Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(4):1087ADSCrossRefGoogle Scholar
  78. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230ADSCrossRefGoogle Scholar
  79. Tiedemann R, Sarnthein M, Shackleton NJ (1994) Astronomic time scale for the Pliocene Atlantic δ 18 O and dust flux records of ocean drilling program site 659. Paleoceanography 9:19–638CrossRefGoogle Scholar
  80. Timmermann A, Lohmann G (2000) Noise-induced transitions in a simplified model of the thermohaline circulation. J Phys Oceanogr 30(8):1891–1900ADSCrossRefGoogle Scholar
  81. Timmermann A, Oberhuber J, Bracher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696ADSCrossRefGoogle Scholar
  82. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  83. Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA (1993) Hydrodynamic stability without eigenvalues. Science 261:578–584ADSCrossRefzbMATHMathSciNetGoogle Scholar
  84. Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:988–993CrossRefGoogle Scholar
  85. Uhlenbeck GE, Ornstein LS (1930) On the theory of Brownian motion. Phys Rev 36:823–841ADSCrossRefzbMATHGoogle Scholar
  86. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillation. Bull Am Meteorol Soc 80:245–255CrossRefGoogle Scholar
  87. Wunsch C (2004) Quantitative estimate of the Milankovitch-forced contribution to observed quaternary climate change. Quat Sci Rev 23(9–10):1001–1012ADSCrossRefGoogle Scholar
  88. Yamamoto R, Iwashima T, Sanga NK (1985) Climatic jump: a hypothesis in climate diagnosis. J Meteorol Soc Jpn 63:1157–1160Google Scholar
  89. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693ADSCrossRefGoogle Scholar
  90. Zwanzig R (1980) Thermodynamic modeling of systems far from equilibrium. In: Systems far from equilibrium. Lecture notes in physics. Interscience, ISSN 1616–6361. doi: 10.1007/BFb0025631Google Scholar

Books and Reviews

  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005. doi:10.1126/science.1081056ADSCrossRefGoogle Scholar
  2. Dijkstra HA (2005) Nonlinear physical oceanography, vol 28, Atmospheric and oceanographic sciences library. Springer, Dordrecht, Berlin, Heidelberg, New YorkGoogle Scholar
  3. Hansen J, Sato M, Kharecha P (2007) Climate change and trace gases. Phil Trans R Soc A 365:1925–1954. doi:10.1098/rsta.2007.2052ADSCrossRefGoogle Scholar
  4. Lockwood JG (2001) Abrupt and sudden climate transitions and fluctuations: a review. Int J Climat 21:1153–1179CrossRefGoogle Scholar
  5. Rial JA, Pielke RA Sr, Beniston M, Claussen M, Canadell J, Cox P, Held H, deNoblet-Ducudre N, Prinn R, Reynolds J, Salas JD (2004) Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system. Clim Change 65:11–38CrossRefGoogle Scholar
  6. Ruddiman WF (2001) Earth’s climate. Past and future. W.H. Freeman, New York, 465 ppGoogle Scholar
  7. Stocker TF (1999) Abrupt climate changes from the past to the future – a review. Int J Earth Sci 88:365–374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine Research Bussestr. 24BremerhavenGermany