Skip to main content

Analog Computation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 389 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Anderson JA (1995) An introduction to neural networks. MIT Press, Cambridge

    MATH  Google Scholar 

  • Ashley JR (1963) Introduction to analog computing. Wiley, New York

    MATH  Google Scholar 

  • Aspray W (1993) Edwin L. Harder and the Anacom: analog computing at Westinghouse. IEEE Ann Hist Comput 15(2):35–52

    Article  MathSciNet  Google Scholar 

  • Basford DA, Smith JM, Connor RJ, MacLennan BJ, Holleman J (2016) The impact of analog computational error on an analog Boolean satisfiability solver. IEEE international symposium on circuits & systems 2016, Montreal

    Google Scholar 

  • Basu A, Brink S, Schlottmann C, Ramakrishnan S, Petre C, Koziol S, Baskaya F, Twigg CM, Hasler P (2010) A floating-gate-based field-programmable analog array. IEEE J Solid State Circuits 45:1781–1794

    Article  Google Scholar 

  • Ben-Hur A, Siegelmann HT, Fishman S (2002) A theory of complexity for continuous time systems. J Complex 18:51–86

    Article  MathSciNet  MATH  Google Scholar 

  • Bissell CC (2004) A great disappearing act: the electronic analogue computer. In: IEEE conference on the history of electronics, Bletchley, June 2004. pp 28–30

    Google Scholar 

  • Blum L, Shub M, Smale S (1988) On a theory of computation and complexity over the real numbers: NP completeness, recursive functions and universal machines. Bull Am Math Soc 21:1–46

    Article  MathSciNet  MATH  Google Scholar 

  • Blum L, Cucker F, Shub M, Smale S (1998) Complexity and real computation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bournez O, Cosnard M (1996) On the computational power of dynamical systems and hybrid systems. Theor Comput Sci 168(2):417–459

    Article  MathSciNet  MATH  Google Scholar 

  • Bournez O, Campagnolo ML, Graça DS, Hainry E (2006) The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. In: Theory and applications of models of computation (TAMC 2006). Lectures notes in computer science, vol 3959. Springer, Berlin, pp 631–643

    Google Scholar 

  • Bowles MD (1996) US technological enthusiasm and British technological skepticism in the age of the analog brain. Ann Hist Comput 18(4):5–15

    Article  Google Scholar 

  • Branicky MS (1994) Analog computation with continuous ODEs. In: Proceedings IEEE workshop on physics and computation, Dallas, pp 265–274

    Google Scholar 

  • Brockett RW (1988) Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems. In: Proceedings 27th IEEE conference decision and control, Austin, Dec 1988, pp 799–803

    Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd G, Theraulaz J, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, New York

    MATH  Google Scholar 

  • Clymer AB (1993) The mechanical analog computers of Hannibal Ford and William Newell. IEEE Ann Hist Comput 15(2):19–34

    Article  Google Scholar 

  • Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci 107(36):15927–15932

    Article  ADS  Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic, Amsterdam

    Google Scholar 

  • Davies JA (2005) Mechanisms of morphogenesis. Elsevier, Amsterdam

    Google Scholar 

  • Davis M (2004) The myth of hypercomputation. In: Teuscher C (ed) Alan turing: life and legacy of a great thinker. Springer, Berlin, pp 195–212

    Chapter  Google Scholar 

  • Davis M (2006) Why there is no such discipline as hypercomputation. Appl Math Comput 178:4–7

    ADS  MathSciNet  MATH  Google Scholar 

  • Ercsey-Ravasz M, Toroczkai Z (2011) Optimization hardness as transient chaos in an analog approach to constraint satisfaction. Nat Phys 7(12):966–970

    Article  Google Scholar 

  • Fakhraie SM, Smith KC (1997) VLSI-compatible implementation for artificial neural networks. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Franklin S, Garzon M (1990) Neural computability. In: Omidvar OM (ed) Progress in neural networks, vol 1. Ablex, Norwood, pp 127–145

    Google Scholar 

  • Freeth T, Bitsakis Y, Moussas X, Seiradakis JH, Tselikas A, Mangou H, Zafeiropoulou M, Hadland R, Bate D, Ramsey A, Allen M, Crawley A, Hockley P, Malzbender T, Gelb D, Ambrisco W, Edmunds MG (2006) Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444:587–591

    Article  ADS  Google Scholar 

  • Garzon M, Franklin S (1989) Neural computability II (extended abstract). In: Proceedings, IJCNN international joint conference on neural networks, vol 1. Institute of Electrical and Electronic Engineers, New York, pp 631–637

    Google Scholar 

  • Garzon M, Franklin S (1990) Computation on graphs. In: Omidvar OM (ed) Progress in neural networks, vol 2. Ablex, Norwood

    Google Scholar 

  • van Gelder T (1997) Dynamics and cognition. In: Haugeland J (ed) Mind design II: philosophy, psychology and artificial intelligence. MIT Press, Cambridge, MA, pp 421–450. Revised & enlarged edition, Chap 16

    Google Scholar 

  • Goldstine HH (1972) The computer from Pascal to von Neumann. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Grossberg S (1967) Nonlinear difference-differential equations in prediction and learning theory. Proc Natl Acad Sci U S A 58(4):1329–1334

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grossberg S (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math LII:213–257

    Article  MathSciNet  MATH  Google Scholar 

  • Grossberg S (1976) Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol Cybern 23:121–134

    Article  MathSciNet  MATH  Google Scholar 

  • Hartl DL (1994) Genetics, 3rd edn. Jones & Bartlett, Boston

    Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci U S A 81:3088–3092

    Article  ADS  MATH  Google Scholar 

  • Howe RM (1961) Design fundamentals of analog computer components. Van Nostrand, Princeton

    Google Scholar 

  • Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–99

    Article  Google Scholar 

  • Kirchhoff G (1845) Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. Ann Phys Chem 140(4):497–514

    Article  ADS  Google Scholar 

  • Lang GF (2000) Analog was not a computer trademark! Why would anyone write about analog computers in year 2000? Sound Vib 34(8):16–24

    Google Scholar 

  • Lipshitz L, Rubel LA (1987) A differentially algebraic replacement theorem. Proc Am Math Soc 99(2):367–372

    Article  MathSciNet  MATH  Google Scholar 

  • Maass W, Sontag ED (1999) Analog neural nets with Gaussian or other common noise distributions cannot recognize arbitrary regular languages. Neural Comput 11(3):771–782

    Article  Google Scholar 

  • MacLennan BJ (1987) Technology-independent design of neurocomputers: the universal field computer. In: Caudill M, Butler C (eds) Proceedings of the IEEE first international conference on neural networks, vol 3. IEEE Press, New York. pp 39–49

    Google Scholar 

  • MacLennan BJ (1990) Field computation: a theoretical framework for massively parallel analog computation, parts I–IV. Technical report UT-CS-90-100, Department of Computer Science, University of Tennessee, Knoxville. Available from http://web.eecs.utk.edu/∼mclennan. Accessed 20 May 2008

  • MacLennan BJ (1991) Gabor representations of spatiotemporal visual images. Technical report UT-CS-91-144, Department of Computer Science, University of Tennessee, Knoxville. Available from http://web.eecs.utk.edu/∼mclennan. Accessed 20 May 2008

  • MacLennan BJ (1994b) Continuous computation and the emergence of the discrete. In: Pribram KH (ed) Origins: brain & self-organization. Lawrence Erlbaum, Hillsdale, pp 121–151

    Google Scholar 

  • MacLennan BJ (1994a) Words lie in our way. Minds Mach 4(4):421–437

    Article  Google Scholar 

  • MacLennan BJ (1995) Continuous formal systems: a unifying model in language and cognition. In: Proceedings of the IEEE workshop on architectures for semiotic modeling and situation analysis in large complex systems, Monterey, Aug 1995. IEEE Press, New York. pp 161–172. Also available from http://web.eecs.utk.edu/∼mclennan. Accessed 20 May 2008

  • MacLennan BJ (1999) Field computation in natural and artificial intelligence. Inf Sci 119:73–89

    Article  MathSciNet  Google Scholar 

  • MacLennan BJ (2001) Can differential equations compute? Technical report UT-CS-01–459, Department of Computer Science, University of Tennessee, Knoxville. Available from http://web.eecs.utk.edu/∼mclennan. Accessed 20 May 2008

  • MacLennan BJ (2003) Transcending Turing computability. Minds Mach 13:3–22

    Article  MATH  Google Scholar 

  • MacLennan BJ (2004) Natural computation and non-Turing models of computation. Theor Comput Sci 317:115–145

    Article  MathSciNet  MATH  Google Scholar 

  • MacLennan BJ (2009) Super-Turing or non-Turing? Extending the concept of computation. Int J Unconv Comput 5:369–387

    Google Scholar 

  • Maini PK, Othmer HG (eds) (2001) Mathematical models for biological pattern formation. Springer, New York

    MATH  Google Scholar 

  • Maziarz EA, Greenwood T (1968) Greek mathematical philosophy. Frederick Ungar, New York

    MATH  Google Scholar 

  • McClelland JL, Rumelhart DE, the PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol 2, Psychological and biological models. MIT Press, Cambridge

    Google Scholar 

  • Mead C (1987) Silicon models of neural computation. In: Caudill M, Butler C (eds) Proceedings, IEEE first international conference on neural networks, vol I. IEEE Press, Piscataway, pp 91–106

    Google Scholar 

  • Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Mills JW (1996) The continuous retina: image processing with a single-sensor artificial neural field network. In: Proceedings IEEE conference on neural networks. IEEE Press, Piscataway

    Google Scholar 

  • Mills JW, Himebaugh B, Kopecky B, Parker M, Shue C, Weilemann C (2006) “Empty space” computes: the evolution of an unconventional supercomputer. In: Proceedings of the 3rd conference on computing frontiers, New York, May 2006. ACM Press, pp 115–126

    Google Scholar 

  • Molnár B, Ercsey-Ravasz M (2013) Asymmetric continuous-time neural networks without local traps for solving constraint satisfaction problems. PLoS One 8(9):e73400

    Article  ADS  Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  • Moore C (1996) Recursion theory on the reals and continuous-time computation. Theor Comput Sci 162:23–44

    Article  MathSciNet  MATH  Google Scholar 

  • Murray JD (1977) Lectures on nonlinear differential-equation models in biology. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Omohundro S (1984) Modeling cellular automata with partial differential equations. Physica D 10:128–134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Orponen P (1997) A survey of continuous-time computation theory. In: Advances in algorithms, languages, and complexity. Kluwer, Dordrecht, pp 209–224

    Google Scholar 

  • Orponen P, Matamala M (1996) Universal computation by finite two-dimensional coupled map lattices. In: Proceedings, physics and computation 1996. New England Complex Systems Institute, Cambridge, pp 243–7

    Google Scholar 

  • Owens L (1986) Vannevar Bush and the differential analyzer: the text and context of an early computer. Technol Cult 27(1):63–95

    Article  Google Scholar 

  • Peterson GR (1967) Basic analog computation. Macmillan, New York

    Google Scholar 

  • Pour-El MB (1974) Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Trans Am Math Soc 199:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Pour-El MB, Richards I (1979) A computable ordinary differential equation which possesses no computable solution. Ann Math Log 17:61–90

    Article  MathSciNet  MATH  Google Scholar 

  • Pour-EL MB, Richards I (1981) The wave equation with computable initial data such that its unique solution is not computable. Adv Math 39:215–239

    Article  MathSciNet  MATH  Google Scholar 

  • Pour-El MB, Richards I (1982) Noncomputability in models of physical phenomena. Int J Theor Phys 21:553–555

    Article  MATH  Google Scholar 

  • Puchta S (1996) On the role of mathematics and mathematical knowledge in the invention of Vannevar Bush’s early analog computers. IEEE Ann Hist Comput 18(4):49–59

    Article  MathSciNet  MATH  Google Scholar 

  • Reiner JM (1968) The organism as an adaptive control system. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Rimon E, Koditschek DE (1989) The construction of analytic diffeomorphisms for exact robot navigation on star worlds. In: Proceedings of the 1989 I.E. international conference on robotics and automation, Scottsdale. IEEE Press, New York, pp 21–26

    Google Scholar 

  • Rogers AE, Connolly TW (1960) Analog computation in engineering design. McGraw-Hill, New York

    Google Scholar 

  • Rubel LA (1985) The brain as an analog computer. J Theor Neurobiol 4:73–81

    Google Scholar 

  • Rubel LA (1988) Some mathematical limitations of the general-purpose analog computer. Adv Appl Math 9:22–34

    Article  MathSciNet  MATH  Google Scholar 

  • Rubel LA (1993) The extended analog computer. Adv Appl Math 14:39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Rumelhart DE, McClelland JL, The PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, Foundations, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Sanger TD (1996) Probability density estimation for the interpretation of neural population codes. J Neurophysiol 76:2790–2793

    Google Scholar 

  • Shannon CE (1941) Mathematical theory of the differential analyzer. J Math Phys Mass Inst Technol 20:337–354

    MathSciNet  MATH  Google Scholar 

  • Shannon CE (1993) Mathematical theory of the differential analyzer. In: Sloane NJA, Wyner AD (eds) Claude Elwood Shannon: collected papers. IEEE Press, New York, pp 496–513

    Google Scholar 

  • Siegelmann HT (1999) Neural networks and analog computation: beyond the Turing limit. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Siegelmann HT, Sontag ED (1994) Analog computation via neural networks. Theor Comput Sci 131:331–360

    Article  MathSciNet  MATH  Google Scholar 

  • Siegelmann HT, Ben-Hur A, Fishman S (1999) Computational complexity for continuous time dynamics. Phys Rev Lett 83(7):1463–1466

    Article  ADS  Google Scholar 

  • Small JS (1993) General-purpose electronic analog computing. IEEE Ann Hist Comput 15(2):8–18

    Article  Google Scholar 

  • Small JS (2001) The analogue alternative: the electronic analogue computer in Britain and the USA, 1930–1975. Routledge, London/New York

    Google Scholar 

  • Stannett M (1990) X-machines and the halting problem: building a super-Turing machine. Form Asp Comput 2:331–341

    Article  MATH  Google Scholar 

  • Teo JJY, Woo SS, Sarpeshkar R (2015) Synthetic biology: a unifying view and review using analog circuits. IEEE Trans Biomed Circ Syst 9(4):453–474

    Article  Google Scholar 

  • Thomson W (Lord Kelvin) (1876) Mechanical integration of the general linear differential equation of any order with variable coefficients. Proc R Soc 24:271–275

    Google Scholar 

  • Thomson W (Lord Kelvin) (1878) Harmonic analyzer. Proc R Soc 27:371–373

    Google Scholar 

  • Thomson W (Lord Kelvin) (1938) The tides. In: The Harvard classics, vol 30, Scientific papers. Collier, New York, pp 274–307

    Google Scholar 

  • Truitt TD, Rogers AE (1960) Basics of analog computers. John F Rider, New York

    Google Scholar 

  • Weyrick RC (1969) Fundamentals of analog computers. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Wolpert DH (1991) A computationally universal field computer which is purely linear. Technical report LA-UR-91-2937. Los Alamos National Laboratory, Loa Alamos

    Google Scholar 

  • Wolpert DH, MacLennan BJ (1993) A computationally universal field computer that is purely linear. Technical report UT-CS-93-206. Department of Computer Science, University of Tennessee, Knoxville

    Google Scholar 

  • Yin X, Sedighi B, Varga M, Ercsey-Ravasz M, Toroczkai Z, Hu XS (2016) Efficient analog circuits for Boolean satisfiability. arXiv:1606.07467

    Google Scholar 

Books and Reviews

  • Bissell CC (2004) A great disappearing act: the electronic analogue computer. In: IEEE conference on the history of electronics, Bletchley, June 2004

    Google Scholar 

  • Fifer S (1961) Analog computation: theory, techniques and applications, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Lipka J (1918) Graphical and mechanical computation. Wiley, New York

    MATH  Google Scholar 

  • Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Siegelmann HT (1999b) Neural networks and analog computation: beyond the Turing limit. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Small JS (1993) General-purpose electronic analog computing: 1945–1965. IEEE Ann Hist Comput 15(2):8–18

    Article  Google Scholar 

  • Small JS (2001) The analogue alternative: the electronic analogue computer in Britain and the USA, 1930–1975. Routledge, London/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. MacLennan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

MacLennan, B.J. (2017). Analog Computation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_19-6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_19-6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Analog Computation
    Published:
    21 September 2017

    DOI: https://doi.org/10.1007/978-3-642-27737-5_19-6

  2. Original

    Analog Computation
    Published:
    16 September 2015

    DOI: https://doi.org/10.1007/978-3-642-27737-5_19-5