Skip to main content

Anisotropic Networks, Elastomers, and Gels

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 334 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Elastomer:

Nominally equivalent to “rubber,” this defines a weakly cross-linked network of polymer chains which retain high thermal mobility of the strands between cross-links. In this case the entropic effects dominate the response of such networks. Entropic rubber elasticity arises when such a network percolates the whole macroscopic system and the cross-links constrain it such that it remembers its equilibrium shape and responds elastically to deformations. In this sense, an elastomer is contrasted to a polymer glass: The latter can refer to a network so densely cross-linked that the individual chain segments have no significant mobility or a polymer system below its structural glass transition. The shear elastic modulus of elastomers is usually in the range 10–1000 kPa, the estimate arising from the thermal energy kT per network strand, while the glass modulus is usually 0.1–10 GPa, as in most solids.

Gel:

This word is used in many different contexts, in all cases referring to a soft object that is capable of retaining its shape in ambient conditions against, e.g., gravity. The latter condition distinguishes a gel from a “sol” or a nominal liquid. The softness is a relative concept; usually it refers to the modulus at or below the “human” scale, around 1–100 kPa, but there are many examples of even softer gels. In this article, a gel is contrasted to an elastomer, referring to a cross-linked network of polymer chains which is swollen by a good solvent. In this case the effective shear modulus becomes very low; nevertheless, the system remains elastic as long as the integrity of percolating network remains intact.

Quenched constraints:

The term quenched (as opposed to annealed) refers to objects or systems that are prevented from exploring their full phase or conformational space during thermal motion. In elastomers and gels, network cross-links are the quenched objects, constraining the polymer chains connecting to them. The effect of randomly quenched constraints is profound in many physical systems, as local thermodynamic equilibrium has to be established among the mobile (annealed) elements while observing the constraints, the random local realization of which is determined by external factors, such as the preparation history.

Liquid crystal:

This refers to a group of anisotropic phases with incomplete translational order (which would represent a crystalline lattice). Classical examples are the nematic phase, a fluid with no translational order at all, but with a uniaxial orientational order of anisotropic molecules, and smectic or lamellar phases, which in addition to orientational order also have a one-dimensional density modulation (a stack of parallel layers). Liquid crystallinity is a state of spontaneous, equilibrium anisotropy (breaking of orientational symmetry), in contrast to anisotropy induced by external factors such as electric/magnetic field or mechanical deformation.

Shape memory:

Strictly, any elastic material “remembers” its equilibrium shape and returns to it after deformation. The term shape memory was introduced to distinguish materials that could be made to preserve their deformed state, until a trigger (e.g., heating above a transition temperature) induces the return to the original equilibrium shape. In shape-memory alloys, this is due to the martensitic transition; in shape-memory polymers, the deformed state can be fixed by a glass transition or partial crystallization. Liquid crystal elastomers and gels have a reversible or equilibrium shape memory in that the shape of the body is determined by the current state of order at any given temperature.

Bibliography

  • Abramchuk SS, Khokhlov AR (1987) Molecular theory of high elasticity of the polymer networks with orientational ordering of links. Dokl Akad Nauk 297:385

    Google Scholar 

  • Adams JM, Warner M (2005a) Elasticity of smectic-A elastomers. Phys Rev E 71:021708

    Article  ADS  Google Scholar 

  • Adams JM, Warner M (2005b) Soft elasticity in smectic elastomers. Phys Rev E 72:011703

    Article  ADS  Google Scholar 

  • Annaka M, Tanaka T (1992) Multiple phases of polymer gels. Nature 355:430

    Article  ADS  Google Scholar 

  • Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Bladon P, Terentjev EM, Warner M (1994) Deformation-induced orientational transitions in liquid crystal elastomers. J Phys II 4:75

    Google Scholar 

  • Brehmer M, Zentel R, Giesselmann F, Germer R, Zugemaier P (1996) Coupling of liquid crystalline and polymer network properties in LC-elastomers. Liq Cryst 21:589

    Article  Google Scholar 

  • Broer DJ, Lub J, Mol GN (1995) Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378:467

    Article  ADS  Google Scholar 

  • Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307

    Article  ADS  Google Scholar 

  • Chang C-C, Chien L-C, Meyer RB (1997a) Electro-optical study of nematic elastomer gels. Phys Rev E 56:595

    Article  ADS  Google Scholar 

  • Chang C-C, Chien L-C, Meyer RB (1997b) Piezoelectric effects in cholesteric elastomer gels. Phys Rev E 55:534

    Article  ADS  Google Scholar 

  • Cicuta P, Tajbakhsh AR, Terentjev EM (2002) Evolution of photonic structure on deformation of cholesteric elastomers. Phys Rev E 65:051704

    Article  ADS  Google Scholar 

  • Cicuta P, Tajbakhsh AR, Terentjev EM (2004) Photonic bandgaps and optical activity in cholesteric elastomers. Phys Rev E 70:011703

    Article  ADS  Google Scholar 

  • Clarke SM, Terentjev EM (1998) Slow stress relaxation in randomly disordered nematic elastomers and gels. Phys Rev Lett 81:4436

    Article  ADS  Google Scholar 

  • Clarke SM, Tajbakhsh AR, Terentjev EM, Remillat C, Tomlinson GR, House JR (2001a) Soft elasticity and mechanical damping in liquid crystalline elastomers. J Appl Phys 89:6530

    Article  ADS  Google Scholar 

  • Clarke SM, Tajbakhsh AR, Terentjev EM, Warner M (2001b) Anomalous viscoelastic response of nematic elastomers. Phys Rev Lett 86:4044

    Article  ADS  Google Scholar 

  • Courty S, Tajbakhsh AR, Terentjev EM (2003a) Phase chirality and stereo-selective swelling of cholesteric elastomers. Eur Phys J E 12:617

    Article  Google Scholar 

  • Courty S, Tajbakhsh AR, Terentjev EM (2003b) Stereo-selective swelling of imprinted cholesterics networks. Phys Rev Lett 91:085503

    Article  ADS  Google Scholar 

  • Cviklinski J, Tajbakhsh AR, Terentjev EM (2002) UV-isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E 9:427

    Article  Google Scholar 

  • Finkelmann H, Benne I, Semmler K (1995) Smectic liquid single-crystal elastomers. Macromol Symp 96:169

    Article  Google Scholar 

  • Finkelmann H, Kim ST, Munoz A, Palffy-Muhoray P, Taheri B (2001a) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13:1069

    Article  Google Scholar 

  • Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001b) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501

    Article  ADS  Google Scholar 

  • Gebhard E, Zentel R (1998) Freestanding ferroelectric elastomer films. Macromol Rapid Comm 19:341

    Article  Google Scholar 

  • Golubović L, Lubensky TC (1989) Nonlinear elasticity of amorphous solids. Phys Rev Lett 63:1082

    Article  ADS  Google Scholar 

  • Hikmet RAM, Kemperman H (1998) Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392:476

    Article  ADS  Google Scholar 

  • Hogan PM, Tajbakhsh AR, Terentjev EM (2002) UV-manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 65:041720

    Article  ADS  Google Scholar 

  • Ilmain F, Tanaka T, Kokufuta E (1991) Volume transition in a gel driven by hydrogen-bonding. Nature 349:400

    Article  ADS  Google Scholar 

  • Kim ST, Finkelmann H (2001) Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromol Rapid Commun 22:429

    Article  Google Scholar 

  • Kishi R, Shishido M, Tazuke S (1990) Liquid-crystalline polymer gels: anisotropic swelling of poly(gamma-benzyl L-glutamate) gel crosslinked under a magnetic field. Macromolecules 23:3868

    Article  ADS  Google Scholar 

  • Kishi R, Suzuki Y, Ichijo H, Hirasa H (1997) Electrical deformation of thermotropic liquid-crystalline polymer gels. Mol Cryst Liq Cryst 294:411

    Google Scholar 

  • Kundler I, Finkelmann H (1995) Strain-induced director reorientation in nematic liquid single-crystal elastomers. Macromol Rapid Commun 16:679

    Article  Google Scholar 

  • Kundler I, Finkelmann H (1998) Director reorientation via stripe-domains in nematic elastomers. Macromol Chem Phys 199:677

    Article  Google Scholar 

  • Küpfer J, Finkelmann H (1991) Nematic liquid single-crystal elastomers. Macromol Rapid Commun 12:717

    Article  Google Scholar 

  • Kutter S, Terentjev EM (2001) Tube model for the elasticity of entangled nematic rubbers. Eur Phys J E 6:221

    Article  Google Scholar 

  • Legge CH, Davis FJ, Mitchell GR (1991) Memory effects in liquid-crystal elastomers. J Phys II 1:1253

    Google Scholar 

  • Lehmann W, Gattinger P, Keck M, Kremer F, Stein P, Eckert T, Finkelmann H (1998) The inverse electromechanical effect in mechanically oriented SmC*-elastomers. Ferroelectrics 208:373

    Article  Google Scholar 

  • Li MH, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15:569

    Article  Google Scholar 

  • Lubensky TC, Terentjev EM, Warner M (1994) Layer-network coupling in smectic elastomers. J Phys II 4:1457

    Google Scholar 

  • Mao Y, Warner M (2000) Theory of chiral imprinting. Phys Rev Lett 84:5335

    Article  ADS  Google Scholar 

  • Matsui T, Ozaki R, Funamoto K, Ozaki M, Yoshino K (2002) Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl Phys Lett 81:3741

    Article  ADS  Google Scholar 

  • Matsuyama A, Kato T (2002) Nematic ordering-induced volume phase transitions of liquid crystalline gels. J Chem Phys 116:8175

    Article  ADS  Google Scholar 

  • Meier W, Finkelmann H (1990) Piezoelectricity of cholesteric elastomers. Macromol Chem Rapid Commun 11:599

    Article  Google Scholar 

  • Mitchell GR, Davis FJ, Guo W (1993) Strain-induced transitions in liquid-crystal elastomers. Phys Rev Lett 71:2947

    Article  ADS  Google Scholar 

  • Olmsted PD (1994) Rotational invariance and goldstone modes in nematic elastomers and gels. J Phys II 4:2215

    Google Scholar 

  • Pelcovits RA, Meyer RB (1995) Piezoelectricity of cholesteric elastomers. J Phys II 5:877

    Google Scholar 

  • Roberts PMS, Mitchell GR, Davis FJ (1997) A single director switching mode for monodomain liquid crystal elastomers. J Phys II 7:1337

    Google Scholar 

  • Schmidtke J, Stille W, Finkelmann H (2003) Defect mode emission of a dye doped cholesteric polymer network. Phys Rev Lett 90:083902

    Article  ADS  Google Scholar 

  • Schönstein M, Stille W, Strobl G (2001) Effect of the network on the director fluctuations in a nematic side-group elastomer analysed by static and dynamic light scattering. Eur Phys J E 5:511

    Article  Google Scholar 

  • Shibayama M, Tanaka T (1993) Volume phase-transition and related phenomena of polymer gels. Adv Polym Sci 109:1

    Article  Google Scholar 

  • Stenull O, Lubensky TC (2004) Anomalous elasticity of nematic and critically soft elastomers. Phys Rev E 69:021807

    Article  ADS  MathSciNet  Google Scholar 

  • Stenull O, Lubensky TC (2005) Phase transitions and soft elasticity of smectic elastomers. Phys Rev Lett 94:018304

    Article  ADS  Google Scholar 

  • Stenull O, Lubensky TC (2006) Soft elasticity in biaxial smectic and smectic-C elastomers. Phys Rev E 74:051709

    Article  ADS  Google Scholar 

  • Tabiryan N, Serak S, Dai X-M, Bunning T (2005) Polymer film with optically controlled form and actuation. Opt Express 13:7442

    Article  ADS  Google Scholar 

  • Tajbakhsh AR, Terentjev EM (2001) Spontaneous thermal expansion of nematic elastomers. Eur Phys J E 6:181

    Article  Google Scholar 

  • Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40:820

    Article  ADS  Google Scholar 

  • Terentjev EM (1993) Phenomenological theory of non-uniform nematic elastomers: free energy of deformations and electric field effects. Europhys Lett 23:27

    Article  ADS  Google Scholar 

  • Terentjev EM (1995) Density functional model of anchoring energy at a liquid crystalline polymersolid interface. J Phys II 5:159

    Google Scholar 

  • Terentjev EM, Warner M (1999) Piezoelectricity of chiral nematic elastomers. Eur Phys J B 8:595

    Article  ADS  Google Scholar 

  • Terentjev EM, Warner M, Bladon P (1994) Orientation of liquid crystal elastomers and gels by an electric field. J Phys II 4:667

    Google Scholar 

  • Thomsen DL, Keller P, Naciri J, Pink R, Jeon H, Shenoy D, Ratna BR (2001) Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:5868

    Article  ADS  Google Scholar 

  • Urayama K, Okuno Y, Nakao T, Kohjiya S (2003) Volume transition of nematic gels in nematogenic solvents. J Chem Phys 118:2903

    Article  ADS  Google Scholar 

  • Urayama K, Arai YO, Takigawa T (2005a) Volume phase transition of monodomain nematic polymer networks in isotropic solvents. Macromolecules 38:3469

    Article  ADS  Google Scholar 

  • Urayama K, Kondo H, Arai YO, Takigawa T (2005b) Electrically driven deformations of nematic gels. Phys Rev E 71:051713

    Article  ADS  Google Scholar 

  • Vallerien SU, Kremer F, Fischer EW, Kapitza H, Zentel R, Poths H (1990) Experimental proof of piezoelectricity in cholesteric and chiral smectic C* phases of LC-elastomers. Macromol Chem Rapid Comm 11:593

    Article  Google Scholar 

  • Verwey GC, Warner M (1997) Compositional fluctuations and semisoftness in nematic elastomers. Macromolecules 30:4189

    Article  ADS  Google Scholar 

  • Verwey GC, Warner M, Terentjev EM (1996) Elastic instability and stripe domains in liquid crystalline elastomers. J Phys II 6:1273

    Google Scholar 

  • Warner M, Terentjev EM (2007) Liquid crystal elastomers, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Warner M, Gelling KP, Vilgis TA (1988) Theory of nematic networks. J Chem Phys 88:4008

    Article  ADS  Google Scholar 

  • Warner M, Bladon P, Terentjev EM (1994) ‘Soft Elasticity’ - Deformations without resistance in liquid crystal elastomers. J Phys II 4:93

    Google Scholar 

  • Warner M, Terentjev EM, Meyer RB, Mao Y (2000) Untwisting of a cholesteric elastomer by a mechanical field. Phys Rev Lett 85:2320

    Article  ADS  Google Scholar 

  • Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light - miniaturizing a simple photomechanical system. Nature 425:145

    Article  ADS  Google Scholar 

  • Yusuf Y, Ono Y, Sumisaki Y, Cladis PE, Brand HR, Finkelmann H, Kai S (2004) Swelling dynamics of liquid crystal elastomers swollen with low molecular weight liquid crystals. Phys Rev E 69:021710

    Article  ADS  Google Scholar 

  • Zubarev ER, Talroze RV, Yuranova TI, Vasilets VN, Plate NA (1996) Influence of crosslinking conditions on the phase behavior of a polyacrylate-based liquid-crystalline elastomer. Macromol Rapid Commun 17:43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M. Terentjev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Terentjev, E.M. (2015). Anisotropic Networks, Elastomers, and Gels. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_20-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_20-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics