Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Astrophysics: Dynamical Systems

  • George ContopoulosEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_27-3
  • 377 Downloads

Definition of the Subject

Dynamical systems is a broad subject, where research has been very active in recent years. It deals with systems that change in time according to particular laws. Examples of such systems appear in astronomy and astrophysics, in cosmology, in various branches of physics and chemistry, and in all kinds of other applications, like meteorology, geodynamics, electronics, and biology. In this entry, we deal with the mathematical theory of dynamical systems from the point of view of dynamical astronomy. This theory is generic in the sense that its mathematics can be applied to diverse problems of physics and related sciences, ranging from elementary particles to cosmology.

Introduction

The theory of dynamical systems has close relations with astronomy and astrophysics, in particular with dynamical astronomy. Dynamical astronomy followed two quite different traditions until the middle of the twentieth century, namely, celestial mechanics and statistical mechanics.

Cel...

Keywords

Periodic Orbit Chaotic Orbit Jacobi Constant Unstable Periodic Orbit Asymptotic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Argyris J, Faust G, Haase M (1994) An exploration of chaos. North Holland, AmsterdamzbMATHGoogle Scholar
  2. Arnold VI (1961) Sov Math Dokl 2:245; (1963) Russ Math Surv 18(5):9Google Scholar
  3. Arnold VI (1964) Sov Math Dokl 5:581Google Scholar
  4. Aubry S (1978) In: Bishop AR, Schneider T (eds) Solitons and condensed matter physics. Springer, New York, p 264CrossRefGoogle Scholar
  5. Birkhoff GD (1927) Dynamical systems. Am Math Soc. ProvidenceGoogle Scholar
  6. Birkhoff GD (1931) Proc Nat Acad Sci 17:656ADSCrossRefGoogle Scholar
  7. Bishop JL (1987) Astrophys J 322:618ADSCrossRefMathSciNetGoogle Scholar
  8. Chapront-Touzé M, Henrard J (1980) Astron Astrophys 86:221ADSzbMATHGoogle Scholar
  9. Cherry TM (1924) Mon Not R Astron Soc 84:729ADSGoogle Scholar
  10. Chirikov BV (1979) Phys Rep 52:263ADSCrossRefMathSciNetGoogle Scholar
  11. Chirikov BV, Keil E, Sessler AM (1971) J Stat Phys 3:307ADSCrossRefGoogle Scholar
  12. Collet P, Eckmann J-P (1980) Iterated maps on the interval as dynamical systems. Birkhäuser, BostonzbMATHGoogle Scholar
  13. Contopoulos G (1958) Stockholm Ann 20(5)Google Scholar
  14. Contopoulos G (1960) Z Astrophys 49:273ADSzbMATHMathSciNetGoogle Scholar
  15. Contopoulos G (1963) Astron J 68:763ADSCrossRefMathSciNetGoogle Scholar
  16. Contopoulos G (ed) (1966) The theory of orbits in the solar system and in stellar systems. IAU Symp 25. Academic Press, LondonGoogle Scholar
  17. Contopoulos G (1967) In: Hénon M, Nahon F (eds) Les Nouvelles Méthodes de la Dynamique Stellaire. Bull Astron 2(3):223Google Scholar
  18. Contopoulos G (1971) Astron J 76:147ADSCrossRefMathSciNetGoogle Scholar
  19. Contopoulos G (1983) Lett Nuovo Cim 37:149ADSCrossRefMathSciNetGoogle Scholar
  20. Contopoulos G (1985) Comments Astrophys 11:1ADSGoogle Scholar
  21. Contopoulos G (2002) Order and chaos in dynamical astronomy. Springer, New York; Reprinted 2004CrossRefzbMATHGoogle Scholar
  22. Contopoulos G (2008) In: Contopoulos G, Patsis P (eds) Chaos in astronomy. Springer, New York, p 3Google Scholar
  23. Contopoulos G, Harsoula M (2008) Int J Bif Chaos, 18:2929Google Scholar
  24. Contopoulos G, Vandervoort P (1992) Astrophys J 389:118ADSCrossRefGoogle Scholar
  25. Contopoulos G, Voglis N (1996) Celest Mech Dyn Astron 64:1ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. Contopoulos G, Zikides M (1980) Astron Astrophys 90:198ADSMathSciNetGoogle Scholar
  27. Contopoulos G, Efthymiopoulos C, Voglis N (2000) Celest Mech Dyn Astron 78:243ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. Coullet P, Tresser C (1978) J Phys 39:C5–C25Google Scholar
  29. de Zeeuw T (1985) Mon Not R Astron Soc 216:273ADSzbMATHGoogle Scholar
  30. de Zeeuw T, Hunter C, Schwarzschild M (1987) Astrophys J 317:607ADSCrossRefMathSciNetGoogle Scholar
  31. Delaunay M (1860) Théorie du Mouvement de la Lune. Mém. de l’ Acad. de Paris.Google Scholar
  32. Deprit A, Henrard J, Rom A (1971) Astron J 76:273ADSCrossRefGoogle Scholar
  33. Eddington AS (1915) Mon Not R Astron Soc 76:37ADSGoogle Scholar
  34. Efthymiopoulos C, Contopoulos G (2006) J Phys A 39:1819ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. Efthymiopoulos C, Contopoulos G, Voglis N, Dvorak R (1997) J Phys A 30:8167ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. Efthymiopoulos C, Giorgilli A, Contopoulos G (2004) J Phys A 37:1831CrossRefMathSciNetGoogle Scholar
  37. Feigenbaum M (1978) J Stat Phys 19:25ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. Froeschlé C et al (1993) Celest Mech Dyn Astron 56:307ADSCrossRefzbMATHGoogle Scholar
  39. Grassberger P, Procaccia I (1983) Phys D 9:189CrossRefzbMATHMathSciNetGoogle Scholar
  40. Greene JM et al (1981) Phys D 3:468ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. Heggie DC (1983) Celest Mech 29:207ADSCrossRefzbMATHMathSciNetGoogle Scholar
  42. Hénon M (1969) Q J Appl Math 27:291zbMATHGoogle Scholar
  43. Hénon M (1976) Commun Math Phys 50:69ADSCrossRefzbMATHGoogle Scholar
  44. Hénon M, Heiles C (1964) Astron J 69:73ADSCrossRefGoogle Scholar
  45. Hunter C (1988) In: Buchler et al. (eds) Integrability in dynamical systems. N Y Acad Sci Ann 536:25Google Scholar
  46. Hunter C (1990) In: Buchler et al. (eds) Galactic models. N Y Acad Ann 596:187Google Scholar
  47. Kolmogorov AN (1954) Dokl Akad Nauk SSSR 98:527zbMATHMathSciNetGoogle Scholar
  48. Landau LD, Lifshitz EM (1960) Mechanics, 1st edn; 3rd edn (1976). Pergamon Press, OxfordGoogle Scholar
  49. Laskar J (1993) Celest Mech Dyn Astron 56:191ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. Lichtenberg AJ, Lieberman MA (1992) Regular and chaotic dynamics, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  51. Lindblad PO (1960) Stockholm Ann 21:3; 21:4Google Scholar
  52. Lorentz EN (1963) J Atmos Sci 20:130ADSCrossRefGoogle Scholar
  53. Lynden-Bell D (1962) Mon Not R Astron Soc 124:1ADSzbMATHMathSciNetGoogle Scholar
  54. Lynden-Bell D (1998) In: Buchler et al. (eds) Nonlinear dynamics and chaos in astrophysics. NY Acad Sci Ann 867:3Google Scholar
  55. Mather JN (1982) Ergod Theory Dyn Syst 2:397; (1982) Topology 21:457Google Scholar
  56. May RM (1976) Nature 261:459ADSCrossRefGoogle Scholar
  57. Menjuk CR (1985) Phys Rev A 31:3282ADSCrossRefGoogle Scholar
  58. Merritt D, Valluri M (1999) Astron J 118:1177ADSCrossRefGoogle Scholar
  59. Moser J (1962) Nachr Acad Wiss Göttingen II. Math Phys Kl:1Google Scholar
  60. Moser J (1967) Math Ann 169:136CrossRefzbMATHMathSciNetGoogle Scholar
  61. Moser J (1968) Mem Am Math Soc 81:1Google Scholar
  62. Nekhoroshev NN (1977) Russ Math Surv 32(6):1CrossRefzbMATHGoogle Scholar
  63. Ollongren A (1965) In: Blaauw A et al (eds) Stars and stellar systems V galactic structure. University of Chicago Press, Chicago, p 501Google Scholar
  64. Percival IC (1979) In: Month M, Herrera JC (eds) Nonlinear dynamics and the beam-beam interaction. American Institute of Physics, New York, p 302Google Scholar
  65. Pinotsis A (1988) In: Roy AE (ed) Long term behaviour of natural and artificial N-body systems. Kluwer, Dordrecht, p 465CrossRefGoogle Scholar
  66. Poincaré H (1892) Les Méthodes Nouvelles de la Mécanique Céleste Gauthier Villars. Paris I (1892); Paris II (1893); Paris III (1899); Dover edn (1957)Google Scholar
  67. Rosenbluth MN, Sagdeev RA, Taylor JB, Zaslavsky GM (1966) Nucl Fusion 6:217CrossRefGoogle Scholar
  68. Schwarzschild M (1993) Astrophys J 409:563ADSCrossRefGoogle Scholar
  69. Shenker SJ, Kadanoff LP (1982) J Stat Phys 27:631ADSCrossRefzbMATHMathSciNetGoogle Scholar
  70. Siegel CL (1956) Vorlesungen über Himmelsmechanik. Springer, BerlinCrossRefGoogle Scholar
  71. Stäckel P (1890) Math Ann 35:91CrossRefzbMATHGoogle Scholar
  72. Statler TS (1987) Astrophys J 321:113ADSCrossRefGoogle Scholar
  73. Voglis N, Contopoulos G (1994) J Phys A 27:4899ADSCrossRefzbMATHMathSciNetGoogle Scholar
  74. Voglis N, Tsoutsis P, Efthymiopoulos C (2006) Mon Not R Astron Soc 373:280ADSCrossRefGoogle Scholar
  75. Walker GH, Ford J (1969) Phys Rev 188:416ADSCrossRefMathSciNetGoogle Scholar
  76. Weinacht J (1924) Math Ann 91:279CrossRefzbMATHMathSciNetGoogle Scholar
  77. Whittaker ET (1916) Proc R Soc Edinburgh 37:95zbMATHGoogle Scholar
  78. Whittaker ET (1937) A treatise on the analytical dynamics of particles and rigid bodies, 4th edn. Cambridge University Press, CambridgezbMATHGoogle Scholar
  79. Wintner A (1947) Analytical foundations of celestial mechanics. Princeton University Press, PrincetonzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Academy of AthensResearch Center for AstronomyAthensGreece