Skip to main content

Bacterial Computing

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DNA:

Deoxyribonucleic acid. Molecule that encodes the genetic information of cellular organisms.

Operon:

Set of functionally related genes with a common promoter (“on switch”).

Plasmid:

Small circular DNA molecule used to transfer genes from one organism to another.

RNA:

Ribonucleic acid. Molecule similar to DNA, which helps in the conversion of genetic information to proteins.

Transcription:

Conversion of a genetic sequence into RNA.

Translation:

Conversion of an RNA sequence into an amino acid sequence (and, ultimately, a protein).

Bibliography

Primary Literature

  • Anon (2004) Roger Brent and the alpha project. ACM Ubiquity 5(3)

    Google Scholar 

  • Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560–578

    Article  Google Scholar 

  • Barkai N, Leibler S (2000) Circadian clocks limited by noise. Nature 403:267–268

    ADS  Google Scholar 

  • Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    Article  ADS  Google Scholar 

  • Benner SA, Sismour M (2005) Synthetic biology. Nat Rev Genet 6:533–543

    Article  Google Scholar 

  • Brown TA (1990) Gene cloning: an introduction, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Brown C (2004) BioBricks to help reverse-engineer life. EE Times, June 11

    Google Scholar 

  • Brown S (2005) Command performances. San Diego Union-Tribune, Dec 14

    Google Scholar 

  • Crick F (1970) Central dogma of molecular biology. Nature 227:561–563

    Article  ADS  Google Scholar 

  • Eisenberg A (2000) Unlike viruses, bacteria find a welcome in the world of computing. New York Times, June 1

    Google Scholar 

  • Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  ADS  Google Scholar 

  • Ferber D (2004) Synthetic biology: microbes made to order. Science 303(5655):158–161

    Article  Google Scholar 

  • Gardner T, Cantor R, Collins J (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  ADS  Google Scholar 

  • Geyer CR, Battersby TR, Benner SA (2003) Nucleobase pairing in expanded Watson-crick-like genetic information systems. Structure 11:1485–1498

    Article  Google Scholar 

  • Gibbs WW (2004) Synthetic life. Sci Am 250:19

    Google Scholar 

  • Gravitz L (2004) 10 emerging technologies that will change your world. MIT Technol Rev 6:533

    Google Scholar 

  • Hasty J (2002) Design then mutate. Proc Natl Acad Sci 99(26):16516–16518

    Article  ADS  Google Scholar 

  • Hopkin K (2004) Life: the next generation. Sci 18(19):56

    Google Scholar 

  • Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci 69:2904–2909

    Article  ADS  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  Google Scholar 

  • Jha A (2005) From the cells up. Guardian 91:162

    Google Scholar 

  • Kauffman S (1993a) Gene regulation networks: a theory for their global structure and behaviors. Curr Top Dev Biol 6:145–182

    Article  Google Scholar 

  • Kauffman SA (1993b) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Engineering Escherichia coli to see light. Nature 438:441–442

    Article  ADS  Google Scholar 

  • Lobban PE, Sutton CA (1973) Enzymatic end-to-end joining of DNA molecules. J Mol Biol 78(3):453–471

    Article  Google Scholar 

  • Marks P (2005) For ultrasharp pictures, use a living camera. New Scientist, 28, Nov 26

    Google Scholar 

  • McAdams HH, Arkin A (2000) Genetic regulatory circuits: advances toward a genetic circuit engineering discipline. Curr Biol 10:318–320

    Article  Google Scholar 

  • McAdams HH, Shapiro L (1995) Circuit simulation of genetic networks. Science 269(5224):650–656

    Article  ADS  Google Scholar 

  • Monod J (1970) Chance and necessity. Penguin, London

    Google Scholar 

  • Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  Google Scholar 

  • Morton O (2005) Life, reinvented. Wired 13(1):168

    Google Scholar 

  • Old R, Primrose S (1994) Principles of gene manipulation, an introduction to genetic engineering, 5th edn. Blackwell, Boston

    Google Scholar 

  • Ptashne M (2004) A genetic switch, 3rd edn. Phage lambda revisited. Cold Spring Harbor Laboratory Press, Woodbury

    Google Scholar 

  • Registry of standard biological parts. http://parts.mit.edu/

  • Roberts L, Murrell C (eds) (1998) An introduction to genetic engineering. Department of Biological Sciences, University of Warwick

    Google Scholar 

  • Strogatz S (2003) Sync: the emerging science of spontaneous order. Penguin, London

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc B 237:37–72

    Article  ADS  Google Scholar 

  • von Neumann J (1941) The general and logical theory of automata. In: Cerebral mechanisms in behavior. Wiley, New York

    Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci 99(26):16587–16591

    Article  ADS  Google Scholar 

  • You L, Cox RS III, Weiss R, Arnold FH (2004) Programmed population control by cell-cell communication and regulated killing. Nature 428:868–871

    Article  ADS  Google Scholar 

Books and Reviews

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC

    Google Scholar 

  • Amos M (ed) (2004) Cellular computing, Series in Systems biology. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Amos M (2006) Genesis machines: the new science of biocomputing. Atlantic Books, London

    Google Scholar 

  • Benner SA (2003) Synthetic biology: act natural. Nature 421:118

    Article  ADS  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 436:449–453

    Article  ADS  Google Scholar 

  • Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (2004) Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci 101(22):8414–8419

    Article  ADS  Google Scholar 

  • Sayler GS, Simpson ML, Cox CD (2004) Emerging foundations: nano-engineering and bio-microelectronics for environmental biotechnology. Curr Opin Microbiol 7:267–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn Amos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Amos, M. (2013). Bacterial Computing. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_28-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_28-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics