Skip to main content

(3+1)-Dimensional Nonlinear Equations and Couplings of Fifth-Order Equations in the Solitary Waves Theory: Multiple Soliton Solutions

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 724 Accesses

Glossary

Solitons

Solitons appear as a result of a balance between a weakly nonlinear convection and a linear dispersion. The soliton is a localized highly stable wave that retains its identity – shape and speed – upon interaction and resembles particle-like behavior. It is a localized solitary wave so that it decays or approaches a constant at infinity. In the case of a collision, solitons undergo a phase shift. The stability of solitons stems from the delicate equilibrium between the two effects of nonlinearity and dispersion.

Types of Traveling Waves

Traveling waves appear in many scientific and engineering applications in solitary wave theory. Solitons, kinks, peakons, cuspons, compactons, negatons, positons, complexitons, and others are examples of solitary waves. Solitons are localized wave packets which are asymptotically zero at large distances with exponential wings or tails. Kink waves are solitons that rise or descend from one asymptotic state to another, and hence another...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Blaszak M, Szablikowski B, Silindir B (2012) Construction and separability of nonlinear soliton integrable couplings. Appl Math Comput 219(2012):1866–1873

    Article  MATH  MathSciNet  Google Scholar 

  • Geng X (2003) Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J Phys A Math Gen 36:2289–2303

    Article  MATH  ADS  Google Scholar 

  • Hereman W, Nuseir A (1997) Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math Comput Simul 43:13–27

    Article  MATH  MathSciNet  Google Scholar 

  • Hietarinta J (1987) A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations. J Math Phys 28(8):1732–1742

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hirota R (1971) Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett 27(18):1192–1194

    Article  MATH  ADS  Google Scholar 

  • Hirota R (1972) Exact solutions of the modified Korteweg-de Vries equation for multiple collisions of solitons. J Phys Soc Jpn 33(5):1456–1458

    Article  ADS  Google Scholar 

  • Hirota R, Ito M (1983) Resonance of solitons in one dimension. J Phys Soc Jpn 52(3):744–748

    Article  MathSciNet  ADS  Google Scholar 

  • Kadomtsev BB, Petviashvili VI (1970) On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl 15:539–541

    MATH  ADS  Google Scholar 

  • Lenells J (2005) Travelling wave solutions of the Camassa-Holm equation. J Differ Equ 217:393–430

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Liu Z, Wang R, Jing Z (2004) Peaked wave solutions of Camassa–Holm equation. Chaos Solitons Fractals 19:77–92

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ma WX, Fuchssteiner B (1996) Integrable theory of the perturbation equations. Chaos Solitons Fractals 7:1227–1250

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ma WX, Abdeljabbar A, Asaad MG (2011) Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation. Appl Math Comput 217:10016–10023

    Article  MATH  MathSciNet  Google Scholar 

  • Malfliet W (1992) Solitary wave solutions of nonlinear wave equations. Am J Phys 60(7):650–654

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Malfliet W, Hereman W (1996a) The tanh method:I. Exact solutions of nonlinear evolution and wave equations. Phys Scr 54:563–568

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Malfliet W, Hereman W (1996b) The tanh method:II. Perturbation technique for conservative systems. Phys Scr 54:569–575

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Shen H-F, Tu M-H (2011) On the constrained B-type Kadomtsev-Petviashvili equation: Hirota bilinear equations and Virasoro symmetry. J Math Phys 52:032704

    Article  MathSciNet  ADS  Google Scholar 

  • Veksler A, Zarmi Y (2005) Wave interactions and the analysis of the perturbed Burgers equation. Phys D 211:57–73

    Article  MATH  MathSciNet  Google Scholar 

  • Wadati M (1972) The exact solution of the modified Korteweg-de Vries equation. J Phys Soc Jpn 32:1681–1687

    Article  ADS  Google Scholar 

  • Wadati M (2001) Introduction to solitons. Pramana J Phys 57(5/6):841–847

    Article  ADS  Google Scholar 

  • Wazwaz AM (2007a) Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl Math Comput 190:633–640

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2007b) Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl Math Comput 190:1198–1206

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2007c) New solitons and kink solutions for the Gardner equation. Commun Nonlinear Sci Numer Simul 12(8):1395–1404

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Wazwaz AM (2007d) Multiple-soliton solutions for the Boussinesq equation. Appl Math Comput 192:479–486

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008a) The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation. Appl Math Comput 199(1):133–138

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008b) Multiple-front solutions for the Burgers-Kadomtsev-Petvisahvili equation. Appl Math Comput 200:437–443

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008c) Multiple-soliton solutions for the Lax-Kadomtsev-Petvisahvili (Lax- KP) equation. Appl Math Comput 201(1/2):168–174

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008d) The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl Math Comput 201(1/2):489–503

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008e) Multiple-soliton solutions of two extended model equations for shallow water waves. Appl Math Comput 201(1/2):790–799

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008f) Single and multiple-soliton solutions for the (2 + 1)-dimensional KdV equation. Appl Math Comput 204:20–26

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008g) Solitons and singular solitons for the Gardner-KP equation. Appl Math Comput 204:162–169

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2008h) Regular soliton solutions and singular soliton solutions for the modified Kadomtsev-Petviashvili equations. Appl Math Comput 204:817–823

    Article  MATH  MathSciNet  Google Scholar 

  • Wazwaz AM (2009a) Adomian decomposition method applied to nonlinear evolution equations in solitons theory. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Heibelberg

    Google Scholar 

  • Wazwaz AM (2011a) Multi-front waves for extended form of modified Kadomtsev–Petviashvili equation. Appl Math Mech 32(7):875–880

    Google Scholar 

  • Wazwaz AM (2011b) Distinct kinds of multiple soliton solutions for a (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation. Phys Scr 84:055006

    Google Scholar 

  • Wazwaz AM (2011c) A new fifth order nonlinear integrable equation: multiple soliton solutions. Physica Scripta 83:015012

    Google Scholar 

  • Wazwaz AM (2011d) A new generalized fifth-order nonlinear integrable equation. Phys Scr 83:035003

    Google Scholar 

  • Wazwaz AM (2012) Multiple soliton solutions for some (3 + 1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy. Appl Math Lett 25(1):1936–1940

    Article  MATH  MathSciNet  Google Scholar 

  • Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15:240–243

    Article  MATH  ADS  Google Scholar 

  • Zhang Y, Tam H (2010) Three kinds of coupling integrable couplings of the Kortewegde Vries hierarchy of evolution equations. J Math Phys 51:043510

    Article  MathSciNet  ADS  Google Scholar 

  • Zhaqilao (2012) A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation. Commun Nonlinear Sci Numer Simul 17:2319–2332

    Article  MATH  MathSciNet  ADS  Google Scholar 

Books and Reviews

  • Ablowitz MJ, Clarkson PA (1991) Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Drazin PG, Johnson RS (1996) Solitons: an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  • Hirota R (2004) The direct method in soliton theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Wazwaz AM (2002) Partial differential equations: methods and applications. Balkema Publishers, Lisse

    Google Scholar 

  • Wazwaz AM (2009b) Partial differential equations: methods and solitary waves theory. Springer/HEP, Berlin/Beijing

    Google Scholar 

  • Wazwaz AM (1997) A first course in integral equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Wazwaz AM (2011e) Linear and nonlinear integral equations. Springer/HEP, Berlin/Beijing

    Google Scholar 

  • Whitham GB (1999) Linear and nonlinear waves. Wiley–Interscience Series, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Majid Wazwaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Wazwaz, AM. (2015). (3+1)-Dimensional Nonlinear Equations and Couplings of Fifth-Order Equations in the Solitary Waves Theory: Multiple Soliton Solutions. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_5-7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_5-7

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics