Skip to main content

Cellular Automata Modeling of Complex Biochemical Systems

  • Living reference work entry
  • First Online:

Definition of the Subject

Cellular automata are discrete, agent-based models that can be used for the simulation of complex systems (Kier et al. 2005a). They are composed of:

  • A grid of cells

  • A set of ingredients called agents that can occupy the cells

  • A set of local rules governing the behaviors of the agents

  • Specified initial conditions

Once these components are defined, a simulation can be carried out. During the simulation the system evolves via a series of discrete time steps, or iterations, in which the rules are applied to all of the ingredients of the system and the configuration of the system is regularly updated. A striking feature of the cellular automata (CA) models is that they treat not only the ingredients, or agents, of the model as discrete entities, as do the traditional models of physics and chemistry, but in the CA models, time (iterations) and space (the cells) are also regarded as discrete, in contrast to the continuous forms assumed for these variables in the...

This is a preview of subscription content, log in via an institution.

Abbreviations

Agents :

Ingredients under study occupying the cells in the grid.

Asynchronous :

Each cell in turn, at random, responds to a rule.

Cells :

Sections of the grid in which the agents exist.

Gravity :

The relative relationship of two agents within the frame of a grid with opposite bound edges.

Grid :

The frame containing the cells and the agents.

Movement :

The simulation of agent movement between cells accomplished by the disappearance of an agent in a cell and the appearance of that agent in an adjacent cell.

Neighborhood :

The cells immediately touching a given cell in the grid.

Rules :

Statements of actions to be taken by an agent under certain conditions. They may take the form of a probability of such an action.

Synchronous :

All cells in a grid exercise a simultaneous response to a rule.

Bibliography

Primary Literature

  • Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. MIT Press, Cambridge

    Google Scholar 

  • Bonchev D (2003) Complexity of protein-protein interaction networks, complexes and pathways. In: Conn M (ed) Handbook of proteomics methods. Humana, New York, pp 451–462

    Google Scholar 

  • Cheng C-K, Kier LB (1995a) A cellular automata model of oil-water partitioning. J Chem Inf Comput Sci 35:1054–1061

    Article  Google Scholar 

  • Ermentrout GB, Edelstein-Keshet L (1993) J Theor Biol 160:97–133

    Article  Google Scholar 

  • Grimm V, Revilla E, Berger U et al (2005) Science 310:987–991

    Article  ADS  Google Scholar 

  • Kapral R, Showalter K (1995) Chemical waves and patterns. Kluwer, Boston

    Book  Google Scholar 

  • Kier LB (2007a) Water as a complex system: its role in ligand diffusion, general anesthesia, and sleep. Chem Biodivers 4:2473–2479

    Article  Google Scholar 

  • Kier LB, Cheng C-K (1994a) A cellular automata model of water. J Chem Inf Comput Sci 34:647–654

    Article  Google Scholar 

  • Kier LB, Cheng C-K (1994b) A cellular automata model of an aqueous solution. J Chem Inf Comput Sci 34:1334–1341

    Article  Google Scholar 

  • Kier LB, Cheng C-K (1995) A cellular automata model of dissolution. Pharm Res 12:1521–1528

    Article  Google Scholar 

  • Kier LB, Cheng C-K (1997) A cellular automata model of membrane permeability. J Theor Biol 186:75–85

    Article  Google Scholar 

  • Kier LB, Cheng C-K (2000) A cellular automata model of an anticipatory system. J Mol Graph Model 18:29–35

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Testa B (1995) A cellular automata model of the hydrophobic effect. Pharm Res 12:615–622

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Testa B (1996a) A cellular automata model of enzyme kinetics. J Mol Graph 14:227–234

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Testa B (1996b) Cellular automata model of micelle formation. Pharm Res 13:1419–1426

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Testa B (1997) A cellular automata model of diffusion in aqueous systems. J Pharm Sci 86:774–781

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Tute M, Seybold PG (1998) A cellular automata model of acid dissociation. J Chem Inf Comput Sci 38:271–278

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Karnes HT (2000a) A cellular automata model of chromatography. Biomed Chromatogr 14:530–539

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Seybold PG (2001a) A cellular automata model of aqueous systems. Rev Comput Chem 17:205–238

    Article  Google Scholar 

  • Kier LB, Seybold PG, Cheng C-K (2005a) Modeling chemical systems using cellular automata. Springer, Dordrecht

    Google Scholar 

  • Kier LB, Bonchev D, Buck G (2005b) Modeling biochemical networks: a cellular automata approach. Chem Biodivers 2:233–243

    Article  Google Scholar 

  • Kohler TA, Gumerman GJ (2000) Dynamics in human and primate societies: agent-based modelling of social and spatial processes. Oxford University Press, New York

    MATH  Google Scholar 

  • Moore J, Seybold PG (n.d.) To be published personal correspondence

    Google Scholar 

  • Moreira N (2006) In pixels and in health. Sci News 21:40–44

    Article  Google Scholar 

  • Neuforth A, Seybold PG, Kier LB, Cheng C-K (2000a) Cellular automata models of kinetically and thermodynamically controlled reactions, vol A. Int J Chem Kinet 32:529–534

    Article  Google Scholar 

  • Okabe H (1978) Photochemistry of small molecules. Wiley, New York, p 370

    Google Scholar 

  • Seybold PG, Kier LB, Cheng C-K (1997a) J Chem Inf Comput Sci 37:386–391

    Article  Google Scholar 

  • Seybold PG, Kier LB, Cheng C-K (1998a) Stochastic cellular automata models of molecular excited state dynamics. J Phys Chem A 102:886–891

    Article  Google Scholar 

  • Seybold PG, Kier LB, Cheng C-K (1999a) Aurora Borealis: stochastic cellular automata simulation of the excited state dynamics of oxygen atoms. Int J Quantum Chem 75:751–756

    Article  ADS  Google Scholar 

  • Tofolli T, Margolas N (1987) Cellular automata machines: a new environment for modeling. MIT Press, Cambridge

    Google Scholar 

  • Ulam SM (1952) Proc Int Congr Math 2:264, held in 1950

    Google Scholar 

  • Ulam SM (1976a) Adventures of a mathematician. Charles Scribner’s Sons, New York

    MATH  Google Scholar 

  • Von Neumann J (1966a) In: Burks A (ed) Theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  • White R (2005) Modelling multi- scale processes in a cellular automata framework. In: Portugali J (ed) Complex artificial environments. Springer, New York, pp 165–178

    Google Scholar 

  • Wolfram S (2002a) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Wu-Pong S, Cheng C-K (1999) Pharmacokinetic simulations using cellular automata in a pharmacokinetics course. Am J Pharm Educ 63:52–55

    Google Scholar 

Selected Bibliography of Works on Cellular Automata

  • At this time thousands of scientific articles have been published describing cellular automata studies of topics ranging from applications dealing with physical and biological systems to investigations of traffic control and topics in the social sciences. It would be impossible to describe all of these studies within a limited space, but it may be useful to provide a short list of representative investigations on a limited variety of topics, permitting starting points for readers who might wish to further examine applications in these more narrow subjects. Below we give a short selection of publications, some of which, although not explicitly referring to C A, cover the same approach or a related approach

    Google Scholar 

Artificial Life

  • Adami C (1998) An introduction to artificial life. Springer, New York

    Book  MATH  Google Scholar 

  • Langton CG, Farmer JD, Rasmussen S, Taylor C (1992) Artificial life, vol II. Addison-Wesley, Reading

    Google Scholar 

Biological Applications (General)

  • Maini PK, Deutsch A, Dormann S (2003) Cellular automaton modeling of biological pattern formation. Birkhäuser, Boston

    Google Scholar 

  • Sigmund K (1993) Games of life: explorations in ecology, evolution, and behaviour. Oxford University Press, New York

    Google Scholar 

  • Solé R, Goodman B (2000) Signs of life: how complexity pervades biology. Basic Books, New York, A tour-de-force general introduction to biological complexity, with many examples

    Google Scholar 

Books

  • Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gaylord RJ, Nishidate K (1996) Modeling nature: cellular automata simulations with Mathematica®. Telos, Santa Clara

    Book  MATH  Google Scholar 

  • Griffeath D, Moore C (2003) New constructions in cellular automata. In: Santa Fe Institute Studies in the Sciences of Complexity Proceedings. Oxford University Press, New York

    Google Scholar 

  • Gruner D, Kapral R, Lawniczak AT (1993) Nucleation, domain growth, and fluctuations in a bistable chemical system. J Chem Phys 96:2762–2776

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558

    Article  MathSciNet  ADS  Google Scholar 

  • Ilachinski A (2001) Cellular automata: a discrete universe. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Kauffman S (1984) Emergent properties in random complex automata. Physica D 10:145–156

    Article  MathSciNet  ADS  Google Scholar 

  • Kier LB, Seybold PG, Cheng C-K (2005c) Modeling chemical systems using cellular automata. Springer, Dordrecht

    Google Scholar 

  • Manneville P, Boccara N, Vishniac GY, Bidaux R (1990) Cellular automata and modeling of complex physical systems. Springer, New York, pp 57–70

    Google Scholar 

  • Ottino JM (2004) Engineering complex systems. Nature 427:399

    Article  ADS  Google Scholar 

  • Schroeder M (1991) Fractals, chaos, power laws. WH Freeman, New York

    MATH  Google Scholar 

  • Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. MIT Press, Cambridge

    MATH  Google Scholar 

  • Wolfram S (1994) Cellular automata and complexity: collected papers. Westview Press, Boulder

    MATH  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign Emergent Properties

    Google Scholar 

Evolution

  • Farmer JD, Kauffman SA, Packard NH (1986) Autocatalytic replication of polymers. Physica D 22:50–67

    Article  MathSciNet  ADS  Google Scholar 

  • Solé RV, Bascompté J, Manrubia SC (1996) Extinctions: bad genes or weak chaos? Proc R Soc Lond B 263:1407–1413

    Article  ADS  Google Scholar 

  • Solé RV, Manrubia SC (1997) Criticality and unpredictability in macroevolution. Phys Rev E 55:4500–4508

    Article  ADS  Google Scholar 

  • Solé RV, Manrubia SC, Benton M, Bak P (1997) Self-similarity of extinction statistics in the fossil record. Nature 388:764–767

    Article  ADS  Google Scholar 

  • Solé RV, Montoya JM, Erwin DH (2002) Recovery from mass extinction: evolutionary assembly in large-scale biosphere dynamics. Phil Trans R Soc 357:697–707

    Article  Google Scholar 

Excited State Phenomena

  • Seybold PG, Kier LB, Cheng C-K (1998b) Stochastic cellular automata models of molecular excited-state dynamics. J Phys Chem A 102:886–891, Describes general cellular automata models of molecular excited states

    Article  Google Scholar 

  • Seybold PG, Kier LB, Cheng C-K (1999b) Aurora Borealis: stochastic cellular automata simulations of the excited-state dynamics of oxygen atoms. Int J Quantum Chem 75:751–756, This paper examines the emissions and excited-state transitions of atomic Oxygen responsible for some of the displays of the Aurora Borealis

    Article  ADS  Google Scholar 

First-Order Chemical Kinetics

  • Hollingsworth CA, Seybold PG, Kier LB, Cheng C-K (2004) First-order stochastic cellular automata simulations of the Lindemann mechanism. Int J Chem Kinet 36:230–237

    Article  Google Scholar 

  • Neuforth A, Seybold PG, Kier LB, Cheng C-K (2000b) Cellular automata models of kinetically and thermodynamically controlled reactions. Int J Chem Kinet 32:529–534, A study of kinetic and thermodynamic reaction control

    Article  Google Scholar 

  • Seybold PG, Kier LB, Cheng C-K (1997b) Simulation of first-order chemical kinetics using cellular automata. J Chem Inf Comput Sci 37:386–391, This paper illustrates a number of first-order cellular automata models

    Article  Google Scholar 

Fluid Flow

  • Malevanets A, Kapral R (1998) Continuous-velocity lattice-gas model for fluid flow. Europhys Lett 44:552

    Article  ADS  Google Scholar 

Game of Life

  • Alpert M (1999) Not just fun and games. Sci Am 40:42, A profile of John Horton Conway

    Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120–123

    Article  Google Scholar 

  • Gardner M (1971) On cellular automata, self-reproduction, the Garden of Eden and the game of “life”. Sci Am 224:112–117

    Article  Google Scholar 

  • Note: There are many examples on the web of applets that allow you to play the Game of Life. Since these come and go, you are urged to locate them using a search engine

    Google Scholar 

Geology

  • Barton CC, La Pointe PR (1995) Fractals in petroleum geology and earth processes. Plenum, New York

    Book  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

Historical Notes

  • Ulam SM (1952) Random processes and transformations. Proc Int Congr Math 2:264, held in 1950

    Google Scholar 

  • Ulam SM (1976b) Adventures of a mathematician. Charles Scribner’s Sons, New York

    MATH  Google Scholar 

  • Von Neumann J (1966b) In: Burks A (ed) Theory of self-replicating automata. University of Illinois Press, Urbana

    Google Scholar 

  • Zuse K (1982) The computing universe. Int J Theor Phys 21:589

    Article  Google Scholar 

Liquid Phase Interactions

  • Cheng C-K, Kier LB (1995b) A cellular automata model of oil-water partitioning. J Chem Inf Comput Sci 35:1054–1059

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Testa B (1996c) A cellular automata model of micelle formation. Pharm Res 13:1419–1422

    Article  Google Scholar 

  • Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110:86058613

    Article  Google Scholar 

Oscillations

  • Chavez F, Kapral R (2002) Oscillatory and chaotic dynamics in compartmentalized geometries. Phys Rev E 65:056203

    Article  ADS  Google Scholar 

  • Chavez F, Kapral R, Rousseau G, Glass L (2001) Scroll waves in spherical shell geometries. Chaos 11:757

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Goryachev A, Strizhak P, Kapral R (1997) Slow manifold structure and the emergence of mixed-mode oscillations. J Chem Phys 107:2881

    Article  ADS  Google Scholar 

  • Hemming C, Kapral R (2002) Phase front dynamics in inhomogeneously forced oscillatory systems. Physica A 306:199

    Article  MATH  ADS  Google Scholar 

Pattern Formation

  • Kapral R, Showalter K (1994) Chemical waves and patterns. Kluwer, Dordrecht

    Google Scholar 

  • Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284:99–101

    Article  ADS  Google Scholar 

  • Veroney JP, Lawniczak AT, Kapral R (1996) Pattern formation in heterogeneous media. Physica D 99:303–317

    Article  ADS  MATH  Google Scholar 

Physics Applications

  • Rahimi E, Nejad MS (2013) Radius of effect in molecular quantum- dot cellular automata. Mol Phys 111:697–705

    Article  ADS  Google Scholar 

  • Signorini J (1990) Complex computing with cellular automata. In: Manneville P, Boccara N, Vishniac GY, Bidaux R (eds) Cellular automata and modeling of complex physical systems. Springer, New York, pp 57–70

    Google Scholar 

  • Toffoli T (1984) Cellular automata as an alternative (rather than an approximation of) differential equations in modeling physics. Physica D 10:117–127

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vichniac GY (1984) Simulating physics with cellular automata. Physica D 10:96–116

    Article  MathSciNet  ADS  MATH  Google Scholar 

Population Biology and Ecology

  • Bascompté J, Solé RV (1994) Spatially-induced bifurcations in single species population dynamics. J Anim Ecol 63:256–264

    Article  Google Scholar 

  • Bascompté J, Solé RV (1995) Rethinking complexity: modelling spatiotemporal dynamics in ecology. Trends Ecol Evol 10:361–366

    Article  Google Scholar 

  • Bascompté J, Solé RV (1996) Habitat fragmentation, extinction thresholds in spatially explicit models. J Anim Ecol 65:465

    Article  Google Scholar 

  • Deutsch A, Lawniczak AT (1999) Probabilistic lattice models of collective motion, aggregation: from individual to collective dynamics. J Math Biosci 156:255–269

    Article  MATH  MathSciNet  Google Scholar 

  • Fuks H, Lawniczak AT (2001) Individual-based lattice models for the spatial spread of epidemics. Discret Dyn Nat Soc 6(3):1–18

    Article  MATH  Google Scholar 

  • Gamarra JGP, Solé RV (2000) Bifurcations, chaos in ecology: lynx returns revisited. Ecol Lett 3:114–121

    Article  Google Scholar 

  • Levin SA, Grenfell B, Hastings A, Perelson AS (1997) Mathematical, computational challenges in population biology, ecosystems science. Science 275:334–343

    Article  MATH  Google Scholar 

  • Montoya JM, Solé RV (2002) Small world patterns in food webs. J Theor Biol 214:405–412

    Article  Google Scholar 

  • Nowak MA, Sigmund K (2004) Population dynamics in evolutionary ecology. In: Keinan E, Schechter I, Sela M (eds) Life sciences for the 21st century. Wiley-VCH, Cambridge, pp 327–334

    Google Scholar 

  • Solé RV, Alonso D, McKane A (2000) Connectivity, scaling in S-species model ecosystems. Physica A 286:337–344

    Article  MATH  ADS  Google Scholar 

  • Solé RV, Manrubia SC, Kauffman S, Benton M, Bak P (1999) Criticality, scaling in evolutionary ecology. Trends Ecol Evol 14:156–160

    Article  Google Scholar 

  • Solé RV, Montoya JM (2001) Complexity, fragility in ecological networks. Proc R Soc 268:2039–2045

    Article  Google Scholar 

Random Walks

Reviews

  • Kapral R, Fraser SJ (2001) Chaos, complexity in chemical systems. In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics, physical chemistry, vol III. Institute of Physics Publishing, Philadelphia, p 2737

    Google Scholar 

  • Kier LB, Cheng C-K, Testa (1999) Cellular automata models of biochemical phenomena. Futur Gener Comput Sci 16:273–289

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Seybold PG (2000b) Cellular automata models of chemical systems. SAR QSAR Environ Res 11:79–102

    Article  Google Scholar 

  • Kier LB, Cheng C-K, Seybold PG (2001b) Cellular automata models of aqueous solution systems. In: Lipkowitz KM, Boyd DB (eds) Reviews in computational chemistry, vol 17. Wiley-VCH, New York, pp 205–225

    Chapter  Google Scholar 

  • Turcotte DL (1999a) Self-organized criticality. Rep Prog Phys 62:1377–1429

    Article  ADS  Google Scholar 

  • Wolfram S (1983) Cellular automata. Los Alamos Sci 9:2–21

    MathSciNet  Google Scholar 

Second-Order Chemical Kinetics

  • Boon JP, Dab D, Kapral R, Lawniczak AT (1996) Lattice-gas automata for reactive systems. Phys Rep 273:55–148

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chen S, Dawson SP, Doolen G, Jenecky D, Lawiczak AT (1995) Lattice methods for chemically reacting systems. Comput Chem Eng 19:617–646

    Article  Google Scholar 

Self-Organized Criticality

  • Bak P (1996) How nature works. Springer, New York

    Book  MATH  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation for 1/f noise. Phys Rev Lett 59:381–384, A classic paper introducing the “sandpile” cellular automaton

    Article  MathSciNet  ADS  Google Scholar 

  • Turcotte DL (1999b) Self-organized criticality. Rep Prog Phys 62:1377–1429

    Article  ADS  Google Scholar 

Social Insect Behavior

  • Cole BJ (1991) Short-term activity cycles in ants: generation of periodicity by worker inaction. Am Nat 137:144–259

    Google Scholar 

  • Cole BJ (1996) Mobile cellular automata models of ant behavior: movement activity of Leptothorax Allardycei. Am Nat 148:1–15

    Article  Google Scholar 

  • Deneubourg J-L, Goss S, Franks NR, Pasteels JM (1989) The blind leading the blind: modeling chemically mediated Army ant raid patterns. J Insect Behav 2:719–772

    Article  Google Scholar 

  • Goss S, Deneubourg J-L (1988) Autocatalysis as a source of synchronized rhythmical activity in social insects. Insect Soc 35:310–315

    Article  Google Scholar 

  • Solé RV, Miramontes O, Goodwin BC (1993) Oscillations, chaos in ant societies. J Theor Biol 161:343–357

    Article  Google Scholar 

Social Sciences

  • Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landsc Urban Plann 64:145–160

    Article  Google Scholar 

  • Gaylord RJ, D’Andria LJ (1998) Simulating society: a mathematica toolkit for modeling socioeconomic behavior. Springer/Telos, New York

    Book  MATH  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    MATH  Google Scholar 

Traffic Rules

  • Huang P-H, Kong L-J, Liu M-R (2002) A study of a main-road cellular automata traffic flow model. Chin Phys 11:678–683

    Article  ADS  Google Scholar 

  • Nagel K, Wolf DE, Wagner P, Simon P (1998) Two-lane rules for cellular automata: a systematic approach. Phys Rev E 58:1425–1437

    Article  ADS  Google Scholar 

Water

  • Kier LB, Cheng C-K (1994c) A cellular automata model of water. J Chem Inf Comput Sci 34:647

    Article  Google Scholar 

  • Kier LB (2007b) A cellular automata model of bulk water. Chem Biodivers 4:2540–254

    Article  Google Scholar 

Biological Applications (General)

  • Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449:209–212

    Article  ADS  Google Scholar 

  • Wootton JT (2001) Local interactions predict large-scale pattern in empirically derived cellular automata. Nature 413:841–844

    Article  ADS  Google Scholar 

Books

  • Miller JH, Page SE (2007) Complex adaptive systems: an introduction to computational models of social life. Princeton Univ. Press, Princeton

    MATH  Google Scholar 

  • Mitchell M (2009) Complexity. A guided tour. Oxford University Press, New York

    MATH  Google Scholar 

Mpemba Effect

  • Kier LB, Cheng C-K (2013) Effect of initial temperature on water aggregation at a cold surface. Chem Biodivers 10:138–143

    Article  Google Scholar 

Nerve Conduction via Proton Hopping

  • Kier LB, Tombes R, Hall LH, Cheng C-K (2013) A cellular automata model of proton hopping down a channel. Chem Biodivers 10:338–342

    Article  Google Scholar 

  • Kier LB, Tombes R (2013) Proton hopping: a proposed mechanism for myelinated axon nerve impulses. Chem Biodivers 10:596–599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lemont B. Kier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Kier, L.B., Seybold, P.G. (2015). Cellular Automata Modeling of Complex Biochemical Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_56-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_56-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics