Skip to main content

Cellular Automaton Modeling of Tumor Invasion

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Alfonso JCL, Kohn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H (2016) Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights Scientific Reports, 6:37283

    Google Scholar 

  • Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Hatzikirou H, Swanson K, Deutsch A (2017) The biology and mathematical modelling of glioma invasion: a review. J R Soc Interf 14(136):20170490

    Article  Google Scholar 

  • Anderson ARA (2005) A hybrid model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186

    Article  ADS  MATH  Google Scholar 

  • Anderson A, Weaver A, Cummings P, Quaranta V (2006) Tumor morphology and phenotypics evolution driven by selective pressure from the microenvironment. Cell 127:905–915

    Article  Google Scholar 

  • Aubert M, Badoual M, Freol S, Christov C, Grammaticos B (2006) A cellular automaton model for the migration of glioma cells. Phys Biol 3:93–100

    Article  ADS  Google Scholar 

  • Basanta D, Hatzikirou H, Deutsch A (2008) The emergence of invasiveness in tumours: a game theoretic approach. Eur Phys J B 63:393–397

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Basanta D, Simon M, Hatzikirou H, Deutsch A (2008) An evolutionary game theory perspective elucidates the role of glycolysis in tumour invasion. Cell Prolif. 41:980

    Google Scholar 

  • Bodmer W (1997) Somatic evolution of cancer cells. J R Coll Physicians Lond 31(1):82–89

    Google Scholar 

  • Böttger K, Hatzikirou H, Chauviere A, Deutsch A (2012) Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion. Math Model Nat Phenom 7:105–135

    Article  MathSciNet  MATH  Google Scholar 

  • Böttger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) An emerging Allee effect is critical for tumor initiation and persistence. PLOS Comput Biol 11:1–14. https://doi.org/10.1371/journal.pcbi.1004366

    Article  Google Scholar 

  • Breier G, Grosser M, Rezaei M (2014) Endothelial cadherins in cancer. Cell Tissue Res 355:523–527

    Article  Google Scholar 

  • Bru A, Albertos S, Subiza JL, Lopez Garcia-Asenjo J, Bru I (2003) The universal dynamics of tumor growth. Biophys J 85:2948–2961

    Article  Google Scholar 

  • Buder T, Deutsch A, Klink B, Voss-Böhme A (2015) Model-based evaluation of spontaneous tumor regression in pilocytic astrocytoma PLoS Comput Biol, 11(12):e1004662

    Google Scholar 

  • Buder T, Deutsch A, Klink B, Voss-Böhme A (2019) Patterns of tumor progression predict small and tissue-specific tumor-originating niches Front. Oncol., 8, 668

    Google Scholar 

  • Bussemaker HJ, Deutsch A, Geigant E (1997) Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys Rev Lett 78:5018–5021. https://doi.org/10.1103/PhysRevLett.78.5018

    Article  ADS  Google Scholar 

  • Chopard B, Dupuis A, Masselot A, Luthi P (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Compl Syst 5(2):103–246

    Article  MathSciNet  MATH  Google Scholar 

  • Chopard B, Ouared R, Deutsch A, Hatzikirou H, Wolf-Gladrow D (2010) Lattice-gas cellular automaton models for biology: from fluids to cells. Acta Biotheor 58:329–340

    Article  Google Scholar 

  • de Franciscis S, Hatzikirou H, Deutsch A (2011) Analysis of lattice-gas cellular automaton models for tumor growth by means of fractal scaling. Acta Phys Pol B Proc Suppl 4:167

    Article  Google Scholar 

  • Deutsch A (1995) Towards analyzing complex swarming patterns in biological systems with the help of lattice-gas cellular automata. J Biol Syst 3:947–955

    Article  Google Scholar 

  • Deutsch A (2000) A new mechanism of aggregation in a lattice-gas cellular automaton model. Math Comput Model 31:35–40

    Article  MathSciNet  MATH  Google Scholar 

  • Deutsch A, Dormann S (2018) Cellular automaton modeling of biological pattern formation. Birkhauser, Boston

    MATH  Google Scholar 

  • Deutsch A, Lawniczak AT (1999) Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics. Math Biosci 156:255–269

    Article  MathSciNet  MATH  Google Scholar 

  • Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, Brons NHC, Leite S, Sauvageot N, Sarkisjan D, Seyfrid M, Fritah S, Stieber D, Michelucci A, Hertel F, Herold-Mende C, Azuaje F, Skupin A, Bjerkvig R, Deutsch A, Voss-Böhme A, Niclou SP (2019) Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment Nature Communications, 10(1):1787

    Google Scholar 

  • Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Bio 2:393–406

    Google Scholar 

  • Dormann S, Deutsch A, Lawniczak AT (2001) Fourier analysis of Turing-like pattern formation in cellular automaton models. Futur Gener Comput Syst 17:901–909. https://doi.org/10.1016/S0167-739X(00)00068-6

    Article  MATH  Google Scholar 

  • Fedotov S, Iomin A (2007) Migration and proliferation dichotomy in tumor-cell invasion. Phys Rev Lett 98:118101–118104

    Article  ADS  Google Scholar 

  • Frieboes H, Lowengrub J, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. NeuroImage 37(1):59–70

    Article  Google Scholar 

  • Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23

    Article  Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505–1508

    Article  ADS  Google Scholar 

  • Gillies RJ, Gatenby RA (2007) Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev 26:311–317

    Article  Google Scholar 

  • Graner F, Glazier J (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69:2013–2016

    Article  ADS  Google Scholar 

  • Habib S, Molina-Paris C, Deisboeck TS (2003) Complex dynamics of tumors: modeling an emerging brain tumor system with coupled reaction-diffusion equations. Phys A 327:501–524

    Article  MATH  Google Scholar 

  • Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  • Hanahan D, Weinberg R (2011) Hallmarks of cancer. The next generation. Cell 144:646–674

    Article  Google Scholar 

  • Hatzikirou H, Deutsch A (2008) Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr Top Dev Biol 81:401–434

    Article  Google Scholar 

  • Hatzikirou H, Deutsch A, Schaller C, Simon M, Swanson K (2005) Mathematical modelling of glioblastoma tumour development: a review. Math Models Method Appl Sci 15(11):1779–1794

    Article  MathSciNet  MATH  Google Scholar 

  • Hatzikirou H, Brusch L, Deutsch A (2010) From cellular automaton rules to a macroscopic mean- field description. Acta Phys Pol B Proc Suppl 3:399–416

    Google Scholar 

  • Hatzikirou H, Basanta B, Simon M, Schaller C, Deutsch A (2012) “Go or grow”: the key to the emergence of invasion in tumor progression? Math Med Biol 29(1):49–65

    Article  MathSciNet  MATH  Google Scholar 

  • Hatzikirou H, Böttger K, Deutsch A (2015) Model-based comparison of cell density-dependent cell migration strategies. Math Model Nat Phenom 10:94–107

    Article  MathSciNet  MATH  Google Scholar 

  • Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theißen G, Schroeter A, Schuster S (2014) Evolutionary game theory: cells as players Mol. BioSyst., 10, 3044–3065

    Google Scholar 

  • Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson K, Pelegrini-Issac M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54:616–624

    Article  Google Scholar 

  • Lesne A (2007) Discrete vs continuous controversy in physics. Math Struct Comput Sci 17:185–223

    Article  MathSciNet  MATH  Google Scholar 

  • Marchant BP, Norbury J, Perumpanani AJ (2000) Traveling shock waves arising in a model of malignant invasion. SIAM J Appl Math 60(2):263–276

    MATH  Google Scholar 

  • Mente C, Prade I, Brusch L, Breier G, Deutsch A (2010) Parameter estimation with a novel gradient- based optimization method for biological lattice-gas cellular automaton models. J Math Bio 63:173–200

    Article  MathSciNet  MATH  Google Scholar 

  • Mente C, Prade I, Brusch L, Breier G, Deutsch A (2012) A lattice-gas cellular automaton model for in vitro sprouting angiogenesis. Acta Phys Pol B 5:99–115

    MATH  Google Scholar 

  • Moreira J, Deutsch A (2002) Cellular automaton models of tumour development: a critical review. Adv Compl Syst 5:1–21

    Article  MATH  Google Scholar 

  • Nava-Sedeño JM, Hatzikirou H, Klages R, Deutsch A (2017a) Cellular automaton models for time- correlated random walks: derivation and analysis. Sci Rep 7:16952

    Article  ADS  Google Scholar 

  • Nava-Sedeño JM, Hatzikirou H, Peruani F, Deutsch A (2017b) Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration. J Math Biol 75:1075–1100

    Article  MathSciNet  MATH  Google Scholar 

  • Nava-Sedeño JM, Voss-Böhme A, Hatzikirou H, Deutsch A, Peruani F (2020) Modeling collective cell motion: are on- and off-lattice models equivalent? Roy. Soc. Open Sc

    Google Scholar 

  • Nava-Sedeno JM, Hatzikirou H, Voss-Böhme A, Brusch L, Deutsch A, Peruani F (2020) Vectorial active matter on the lattice: emergence of polar condensates and nematic bands in an active zero-range process hal-02460291

    Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  ADS  Google Scholar 

  • Patel A, Gawlinski E, Lemieux S, Gatenby R (2001) Cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. J Theor Biol 213:315–331

    Article  MathSciNet  Google Scholar 

  • Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1996) Biological inferences from a mathematical model of malignant invasion. Invasion Metastasis 16:209–221

    Google Scholar 

  • Perumpanani AJ, Sherratt JA, Norbury J, Byrne HM (1999) A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Phys D 126:145–159

    Article  MATH  Google Scholar 

  • Preziozi L (ed) (2003) Cancer modelling and simulation. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • Reher D, Klink B, Deutsch A, Voss-Böhme A (2017) Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model Biology Direct, 12(1):18

    Google Scholar 

  • Sander LM, Deisboeck TS (2002) Growth patterns of microscopic brain tumours. Phys Rev E 66:051901

    Article  ADS  Google Scholar 

  • Sanga S, Frieboes H, Zheng X, Gatenby R, Bearer E, Cristini V (2007) Predictive oncology: multidisciplinary, multi-scale in-silico modeling linking phenotype, morphology and growth. NeuroImage 37(1):120–134

    Article  Google Scholar 

  • Sherratt JA, Chaplain MAJ (2001) A new mathematical model for avascular tumour growth. J Math Biol 43:291–312

    Article  MathSciNet  MATH  Google Scholar 

  • Sherratt JA, Nowak MA (1992) Oncogenes, anti-oncogenes and the immune response to cancer: a mathematical model. Proc R Soc Lond B 248:261–271

    Article  ADS  Google Scholar 

  • Smallbone K, Gatenby R, Gillies R, Maini P, Gavaghan D (2007) Metabolic changes during carcinogenesis: potential impact on invasiveness. J Theor Biol 244:703–713

    Article  MathSciNet  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond, series numerical mathematics and scientific computation. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Swanson KR, Alvord EC, Murray J (2002) Quantifying efficacy of chemotherapy of brain tumors (gliomas) with homogeneous and heterogeneous drug delivery. Acta Biotheor 50:223–237

    Article  Google Scholar 

  • Syga S, Nava-Sedeño JM, Brusch L, Deutsch A (2019) A lattice-gas cellular automaton model for discrete excitable media, chapter 15. In: Müller S, Tsuji K (eds) Spirals and vortices. Springer, Cham, pp 253–264, Springer

    Google Scholar 

  • Talkenberger K, Cavalcanti-Adam EA, Voss-Böhme A, Deutsch A (2017) Amoeboid-mesenchymal migration plasticity promotes invasion only in complex heterogeneous microenvironments Scientific Reports, 7:9237

    Google Scholar 

  • Tektonidis M, Tektonidis HH, Simon M, Schaller C, Deutsch A (2011) Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J Theor Bio 287:131–147

    Article  MATH  Google Scholar 

  • Turner S, Sherratt JA (2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J Theor Biol 216:85–100

    Article  MathSciNet  Google Scholar 

  • Wolgemuth CW, Hoiczyk E, Kaiser D, Oster GF (2002) How myxobacteria glide. Curr Biol 12(5):369–377

    Article  Google Scholar 

  • Wurzel M, Schaller C, Simon M, Deutsch A (2005) Cancer cell invasion of normal brain tissue: guided by prepattern? J Theor Med 6(1):21–31

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful for generous support throughout the years by the Centre for Information Services and High Performance Computing, Dresden University of Technology, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Hatzikirou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hatzikirou, H., Breier, G., Deutsch, A. (2019). Cellular Automaton Modeling of Tumor Invasion. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_60-6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_60-6

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Cellular Automaton Modeling of Tumor Invasion
    Published:
    20 March 2020

    DOI: https://doi.org/10.1007/978-3-642-27737-5_60-6

  2. Original

    Cellular Automaton Modeling of Tumor Invasion
    Published:
    07 October 2014

    DOI: https://doi.org/10.1007/978-3-642-27737-5_60-5