Skip to main content

Advanced Evolutionary Algorithms in Data Mining

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 431 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Control parameter:

Control parameter determines behavior of evolutionary program (e.g., crossover rate, population size, etc.).

Differential evolution:

An evolutionary algorithm for global optimization, which realized the evolution of a population of individuals using mutation, crossover, and selection operation.

Evolutionary computation:

Solution approach guided by biological evolution, which begins with potential solution models, then iteratively applies an algorithm to find the fittest models from the set to serve as inputs to the next generation, ultimately leading to a model that best represents the data.

Individual:

An individual represents a candidate solution. During the optimization process an evolutionary algorithm usually uses a population of individuals to solve a particular problem.

Search space:

Set of all possible situations of the optimization problem that we want to solve.

Self-adaptation:

The ability that allows an evolutionary algorithm to adapt itself to any general class of problems, by reconfiguring itself accordingly, and do this without user’s interaction. Self-adaptation is applied on control parameter(s).

Bibliography

  • Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation, IOP Publishing Ltd., Bristol, UK

    Google Scholar 

  • Bošković B, Brest J, Zamuda A, Greiner S, Žumer V (2011) History mechanism supported differential evolution for chess evaluation function tuning. Soft Comput Fusion Found Methodol Appl 15:667–682

    Google Scholar 

  • Brest J, Maučec MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3):228–247

    Article  Google Scholar 

  • Brest J, Greiner S, Bošković B, Mernik M, Žumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Brest J, Korošec P, Šilc J, Zamuda A, Bošković B, Maučec MS (2013) Differential evolution and differential ant-stigmergy on dynamic optimisation problems. Int J Syst Sci 44:663–679

    Article  MATH  Google Scholar 

  • Brest J, Zamuda A, Bošković B (2015) Adaptation in the differential evolution. In: Fister I, Fister I Jr (eds) Adaptation and hybridization in computational intelligence. Adaptation, learning, and optimization, vol 18. Springer International Publishing, Cham, CH. pp 53–68

    Google Scholar 

  • Cheng J, Zhang G, Neri F (2013) Enhancing distributed differential evolution with multicultural migration for global numerical optimization. Inform Sci 247:72–93

    Article  MathSciNet  Google Scholar 

  • Das S, Suganthan P (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):27–54

    Google Scholar 

  • Das S, Abraham A, Chakraborty U, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing, Natural computing. Springer, Berlin

    Book  MATH  Google Scholar 

  • Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

  • Elsayed S, Sarker R, Essam D (2014) A self-adaptive combined strategies algorithm for constrained optimization using differential evolution. Appl Math Comput 241:267–282

    Article  MathSciNet  Google Scholar 

  • Feoktistov V (2006) Differential evolution: in search of solutions (Springer optimization and its applications). Springer, New York/Secaucus

    Google Scholar 

  • Glotić A, Zamuda A (2015) Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution. Appl Energy 141:42–56

    Article  Google Scholar 

  • Karafotias G, Hoogendoorn M, Eiben A (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187

    Article  Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    Article  MATH  Google Scholar 

  • Mallipeddi R, Suganthan P (2010) Ensemble of constraint handling techniques. IEEE Trans Evol Comput 14(4):561–579

    Article  Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello C (2014a) Survey of multiobjective evolutionary algorithms for data mining: part II. IEEE Trans Evol Comput 18(1):20–35

    Article  Google Scholar 

  • Mukhopadhyay A, Maulik U, Bandyopadhyay S, Coello Coello C (2014b) A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans Evol Comput 18(1):4–19

    Article  Google Scholar 

  • Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memetic Comp 1(2):153–171

    Article  Google Scholar 

  • Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2):61–106

    Article  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2005) Differential evolution, a practical approach to global optimization. Springer, Berlin Heidelberg, Germany.

    Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  • Storn R, Price K (1995) Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report TR-95-012, Berkeley

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Tanabe R, Fukunaga A (2013) Evaluating the performance of shade on cec 2013 benchmark problems. In: 2013 IEEE congress on evolutionary computation (CEC), 20–23 june, 2013, Cancun, Mexico. IEEE, pp 1952–1959

    Google Scholar 

  • Tanabe R, Fukunaga A (2014) Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE congress on evolutionary computation (CEC2014), 6–11 July 2014, Beijing, China. IEEE, pp 1658–1665

    Google Scholar 

  • Teng NS, Teo J, Hijazi MHA (2009) Self-adaptive population sizing for a tune-free differential evolution. Soft Comput Fusion Found Methodol Appl 13(7):709–724

    Google Scholar 

  • Wang H, Rahnamayan S, Wu Z (2013) Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. J Parallel Distrib Comput 73(1):62–73

    Article  Google Scholar 

  • Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107

    Article  Google Scholar 

  • Zamuda A, Brest J (2014) Vectorized procedural models for animated trees reconstruction using differential evolution. Inform Sci 278:1–21

    Article  MathSciNet  Google Scholar 

  • Zamuda A, Sosa JDH (2014) Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures. Appl Soft Comput 24:95–108

    Article  Google Scholar 

  • Zamuda A, Brest J, Bošković B, Žumer V (2011) Differential evolution for parameterized procedural woody plant models reconstruction. Appl Soft Comput 11:4904–4912

    Article  Google Scholar 

  • Zhang J, Sanderson A (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Brest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Brest, J. (2015). Advanced Evolutionary Algorithms in Data Mining. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_650-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_650-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics