Skip to main content

Chaotic Dynamics in Nonequilibrium Statistical Mechanics

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 15 Accesses

Glossary

Chaotic systems :

The time evolution of a deterministic mechanical system defines a trajectory in the phase space of all the generalized coordinates and generalized momenta. Consider two infinitesimally separated points that lie on two different trajectories in this phase space. If these two trajectories typically separate exponentially with time, the systems is called chaotic provided the set of all points with an exponentially separating partner is of positive measure.

Chaotic hypothesis :

The hypothesis that systems of large numbers of particles interacting with short ranged forces can be treated mathematically as if the system were chaotic with no pathologies in the mathematical description of the systems’ trajectories in phase space.

Dynamical systems theory :

The mathematical theory of the time evolution in phase space, or closely related spaces, of a deterministic system, such as a mechanical system obeying Hamiltonian equations of motion.

Ergodic systems...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Baranyi A, Evans DJ, Cohen EGD (1993) Field-dependent conductivity and diffusion in a two-dimensional Lorentz gas. J Stat Phys 70:1085

    Article  ADS  MATH  Google Scholar 

  • Berry MV (1977) Regular and irregular wave functions. J Phys 10:2083

    ADS  MathSciNet  MATH  Google Scholar 

  • Berry MV (1978) Regular and irregular motion. In: Jorna S (ed) Topics in nonlinear dynamics: a tribute to Sir Edward Bullard. American Institute of Physics, New York

    Google Scholar 

  • Bogoliubov NN (1962) Problems of a dynamical theory in statistical physics. In: Studies in statistical mechanics, vol 1. North Holland, Amsterdam

    Google Scholar 

  • Bohm A, Gadella M (1990) Dirac Kets, Gamow vectors and Gelfand triplets: the rigged Hilbert space formulation of quantum mechanics. Springer, Berlin

    Google Scholar 

  • Bunimovich LA, Demers MF (2005) Deterministic models of the simplest chemical reactions. J Stat Phys 120:239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bunimovich L, Sinai YG (1981) Statistical properties of the Lorentz gas with periodic configuration of scatterers. Commun Math Phys 78:478

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chernov NI, Eyink GL, Lebowitz JL, Sinai YG (1993) Steady state electrical conduction in the periodic Lorentz gas. Commun Math Phys 154:569

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Claus I, Gaspard P (2000) Microscopic chaos and reaction-diffusion processes in the periodic Lorentz gas. J Stat Phys 101:161

    Article  ADS  MATH  Google Scholar 

  • Claus I, Gaspard P, van Beijeren H (2004) Fractals and dynamical chaos in a random 2D Lorentz gas with sinks. Physica D 187:146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Crooks GE (1999) Entropy fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60:2721

    Article  ADS  Google Scholar 

  • de Wijn A, van Beijeren H (2004) Goldstone modes in Lyapunov spectra of hard sphere systems. Phys Rev E 70:016207

    Article  ADS  Google Scholar 

  • Dellago C, Glatz L, Posch H (1995) Lyapunov spectrum of the driven Lorentz gas. Phys Rev E 52:4817

    Article  ADS  MathSciNet  Google Scholar 

  • Dellago C, Posch HA, Hoover WG (1996) Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. Phys Rev E 53:1485

    Article  ADS  Google Scholar 

  • Dettmann CP (2000) The Lorentz gas: a paradigm for nonequilibrium steady states. In: Szasz D (ed) Hardball systems and the Lorentz gas. Springer, Berlin

    Google Scholar 

  • Dettmann CP, Cohen EGD (2000) Microscopic chaos and diffusion. J Stat Phys 101:775

    Article  MathSciNet  MATH  Google Scholar 

  • Dettmann CP, Morriss GP (1996) Proof of Lyapunov exponent pairing for systems at constant kinetic energy. Phys Rev E 53:R5545

    Article  ADS  Google Scholar 

  • Donnay VJ (1996) Elliptic islands in generalized Sinai billiards. Ergod Theory Dyn Syst 16:975

    Article  MathSciNet  MATH  Google Scholar 

  • Dörfle M (1985) Spectrum and eigenfunctions of the Frobenius-Perron operator for the tent map. J Stat Phys 40:93

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dorfman JR (1999) An introduction to chaos in nonequilibrium statistical mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Dorfman JR, Gaspard P (1995) Chaotic scattering theory of transport and reaction-rate coefficients. Phys Rev E 51:28

    Article  ADS  MathSciNet  Google Scholar 

  • Dorfman JR, van Beijeren H (1997) Dynamical systems theory and transport coefficients: A survey with applications to Lorentz gases. Physica A 240:12

    Google Scholar 

  • Dorfman JR, Gaspard P, Gilbert T (2002) Entropy production of diffusion in spatially periodic deterministic systems. Phys Rev E 66:026110

    Article  ADS  MathSciNet  Google Scholar 

  • Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ehrenfest P, Ehrenfest T (1959) The conceptual foundations of the statistical approach in mechanics. Cornell University Press, Ithaca

    MATH  Google Scholar 

  • Evans DJ, Morriss GM (1990) Statistical mechanics of nonequilibrium liquids, 2nd edn. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  • Evans DJ, Searles DJ (2002) The fluctuation theorem. Adv Physics 51:1529

    Article  ADS  Google Scholar 

  • Evans DJ, Hoover WG, Failor BH, Moran B, Ladd AJC (1983) Nonequilibrium molecular dynamics via Gauss’ principle of least constraint. Phys Rev A 28:1016

    Article  ADS  Google Scholar 

  • Evans DJ, Cohen EGD, Morriss GP (1990) Viscosity of a simple liquid from its maximal Lyapunov exponents. Phys Rev A 42:5990

    Article  ADS  Google Scholar 

  • Evans DJ, Cohen EGD, Morriss GP (1993) Probability of second law violations in shearing steady flows. Phys Rev Lett 71:2401

    Article  ADS  MATH  Google Scholar 

  • Evans DJ, Cohen EGD, Searles DJ, Bonetto F (2000) Note on the Kaplan-Yorke dimension and linear transport coefficients. J Stat Phys 101:17

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fox RF (1997) Construction of the Jordan basis for the baker map. Chaos 7:254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fox RF (1998) Entropy evolution for the baker map. Chaos 8:462

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gallavotti G (1999) Statistical mechanics – a short treatise. Springer, Berlin

    MATH  Google Scholar 

  • Gallavotti G, Cohen EGD (1995) Dynamical ensembles in stationary states. J Stat Phys 80:931

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaspard P (1992a) Diffusion, effusion and chaotic scattering. J Stat Phys 68:673

    Article  ADS  MATH  Google Scholar 

  • Gaspard P (1992b) R-adic one dimensional maps and the Euler summation formula. J Phys A 25:L483

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaspard P (1992c) Diffusion in uniformly hyperbolic one dimensional maps and Appell polynomials. Phys Lett A 168:13

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P (1993) What is the role of chaotic scatttering in irreversible processes? Chaos 3:427

    Article  ADS  Google Scholar 

  • Gaspard P (1996) Hydrodynamic modes as singular eigenstates of Liouvillian dynamics: deterministic diffusion. Phys Rev E 53:4379

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P (1997) Entropy production in open vol preserving systems. J Stat Phys 88:1215

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaspard P (1998) Chaos, scattering, and statistical mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gaspard P (2004) Time reversed dynamical entropy and irreversibility in Markovian random processes. J Stat Phys 117:599

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaspard P (2006) Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics. Physica A 369:201

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P, Baras F (1995) Chaotic scattering and diffusion in the Lorentz gas. Phys Rev E 51:5332

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P, Dorfman JR (1995) Chaotic scattering theory, thermodynamic formalism, and transport coefficients. Phys Rev E 52:3525

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P, Nicolis G (1990) Transport properties, Lyapunov exponents and entropy per unit time. Phys Rev Lett 65:1693

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gaspard P, Rice SA (1989) Scattering from a classically chaotic repeller. J Chem Phys 90:2225

    Article  ADS  MathSciNet  Google Scholar 

  • Gaspard P, Claus I, Gilbert T, Dorfman JR (2001) Fractality of hydrodynamic modes of diffusion. Phys Rev Lett 86:1506

    Article  ADS  Google Scholar 

  • Gilbert T, Dorfman JR, Gaspard P (2001) Fractal dimension of the hydrodynamic modes of diffusion. Nonlinearity 14:339

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goldstein S, Lebowitz JL, Sinai YG (1998) Remark on the (non)convergence of ensemble densities in dynamical systems. Chaos 8:393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gutkin E (1996) Billiards in polygons: a survery of recent results. J Stat Phys 83:7

    Article  ADS  MATH  Google Scholar 

  • Haake F (2001) Quantum signatures of chaos. Springer, Berlin

    Book  MATH  Google Scholar 

  • Helfand E (1960) Transport coefficients from dissipation in a canonical ensemble. Phys Rev 119:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hoover WG (1999) Time reversibility, computer simulation, and chaos. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  • Hoover WG, Posch HA (1994) Second-law irreversibility and phase space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra. Phys Rev E 49:1913

    Article  ADS  Google Scholar 

  • Hopf E (1937) Ergodentheorie. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78:2960

    Article  Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Klages R (2007) Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  • Klages R, van Beijeren H, Dorfman JR, Gaspard P (eds) (2004) Microscopic chaos and transport in many-particle systems. Special Issue of Physica D 187:1–391

    Google Scholar 

  • Kubo R, Toda M, Hashitsume (1992) Statistical physics, vol II. Springer, Berlin

    MATH  Google Scholar 

  • Kurchan J (1998) Fluctuation theorem for stochastic dynamics. J Phys A 31:3719

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lazutkin VF (1993) KAM theory and semiclassical approximations to wave functions. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lebowitz JL, Spohn H (1999) A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J Stat Phys 95:333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mazo RM (2002) Brownian motion: fluctuations, dynamics, and applications. Oxford University Press, Clarendon

    MATH  Google Scholar 

  • Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Pollicott M (1985) On the rate of mixing of Axiom-A flows. Invent Math 81:413

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pollicott M (1986) Meromorphic extensions of generalized zeta functions. Invent Math 85:147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Posch HA, Hirshl R (2000) Simulation of billiards and hard body fluids. In: Szasz D (ed) Hard ball systems and the Lorentz gas. Springer, Berlin

    Google Scholar 

  • Posch HA, Hoover WG (1988) Lyapunov instability of dense Lennard-Jones fluids. Phys Rev A 38:473

    Article  ADS  Google Scholar 

  • Posch HA, Hoover WG (1989) Equilibrium and non-equilibrium Lyapunov spectra for dense fluids and solids. Phys Rev A 39:2175

    Article  ADS  Google Scholar 

  • Ruelle D (1986a) Resonances of chaotic dynamical systems. Phys Rev Lett 56:405

    Article  ADS  MathSciNet  Google Scholar 

  • Ruelle D (1986b) Locating resonances for Axiom-A dynamical systems. J Stat Phys 44:281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ruelle D (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J Stat Phys 95:393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simányi N (2004) Proof of the ergodic hypothesis for typical hard ball systems. Ann Henri Poincaré 5:203

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sinai YG (ed) (1991) Dynamical systems, A collection of papers. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  • Srednicki M (1999) The approach to thermal equilibrium in quantized chaotic systems. J Phys A 32:1163

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Stöckmann H-J (1999) Quantum chaos: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Szasz D (ed) (2000) Hard-ball systems and the Lorentz gas. Encyclopedia of mathematical sciences, vol 101. Springer, Berlin

    Google Scholar 

  • Tabachnikov S (2005) Billiards and geometry. American Mathematical Society Press, Providence

    Book  MATH  Google Scholar 

  • Tasaki S, Gilbert T, Dorfman JR (1998) An analytical construction of the SRB measures for baker-type maps. Chaos 8:424

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tél T, Gruiz M (2006) Chaotic dynamics: an introduction based on classical mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tél T, Vollmer J (2000) Entropy balance, multibaker maps, and the dynamics of the Lorentz gas. In: Szasz D (ed) Hard ball systems and the Lorentz gas. Springer, Berlin

    MATH  Google Scholar 

  • Tél T, Vollmer J, Breymann W (1996) Transient chaos: the origin of chaos in driven systems. Europhys Lett 35:659

    Article  ADS  Google Scholar 

  • Toda M, Kubo R, Saito N (1992) Statistical physics, vol I. Springer, Berlin

    MATH  Google Scholar 

  • Turaev D, Rom-Kedar V (1998) Elliptic islands appearing in near-ergodic flows. Nonlinearity 11:575

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Uhlenbeck GE, Ford GW (1963) Lectures in statistical mechanics, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • van Beijeren H, Dorfman JR (1995) Lyapunov exponents and Kolmogorov-Sinai entropy for the Lorentz gas at low densities. Phys Rev Lett 74(4412):erratum 77:1974

    Google Scholar 

  • van Beijeren H, Latz A, Dorfman JR (2001) Chaotic properties of dilute, two and three dimensional random Lorentz gases II: open systems. Phys Rev E 63:016312

    Google Scholar 

  • van Kampen N (1988) Ten theorems about quantum mechanical measurements. Physica A 153:97

    Article  ADS  MathSciNet  Google Scholar 

  • van Zon R, Cohen EGD (2004) Extended heat fluctuation theorems for a system with deterministic and stochastic forces. Phys Rev E 69:056121

    Article  ADS  Google Scholar 

  • van Zon R, van Beijeren H, Dellago C (1998) Largest Lyapunov exponent for many-particle systems at low densities. Phys Rev Lett 80:2035

    Article  ADS  Google Scholar 

  • van Zon R, van Beijeren H, Dorfman JR (2000) Kinetic theory estimates for the Kolmogorov-Sinai entropy and the largest Lyapunov exponents for dilute, hard ball gases and for dilute, random Lorentz gases. In: Szasz D (ed) Hard ball systems and the Lorentz gas. Springer, Berlin

    MATH  Google Scholar 

  • Viscardy S, Gaspard P (2003) Viscosity in the escape-rate formalism. Phys Rev E 68:041205

    Article  ADS  MathSciNet  Google Scholar 

  • Vollmer J (2002) Chaos, spatial extension, transport, and non-equilibrium thermodynamics. Phys Rep 372:131

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wojcik D (2006) Quantum maps with spatial extent: a paradigm for lattice quantum walks. Int J Mod Phys B 20:1969

    Article  ADS  MATH  Google Scholar 

  • Wojtkowski M, Liverani C (1998) Conformally symplectic dynamics and the symmetry of the Lyapunov spectrum. Commun Math Phys 194:7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky GM (2007) The physics of chaos in Hamiltonian systems. Imperial College Press, London

    Book  MATH  Google Scholar 

Books and Reviews

  • Beck C, Schlögl F (1993) Thermodynamics of chaotic systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Casati G, Chirikov B (eds) (1995) Quantum chaos: between order and disorder. Cambridge University Press, Cambridge

    Google Scholar 

  • Dorfman JR (1998) Deterministic chaos and the foundation of the kinetic theory of gases. Phys Rep 301:151

    Article  ADS  MathSciNet  Google Scholar 

  • Garbaczewski P, Olkiewicz R (eds) (2002) Dynamics of dissipation, Lecture notes in physics, vol 597. Springer, Berlin

    MATH  Google Scholar 

  • Moore CC (2015) Ergodic theorem, ergodic theory, and statistical mechanics. PNAS 112:1907

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rom-Kedar V, Zaslavsky G (eds) (2000) Focus issue on chaotic kinetics and transport. Chaos 10(1):1–288

    Google Scholar 

  • Tél T, Gaspard P, Nicolis G (eds) (1998) Focus issue on chaos and irreversibility. Chaos 8(2):309–529

    Google Scholar 

Download references

Acknowledgments

I would like to thank Henk van Beijeren for reading a draft of this article and for his very helpful remarks. I would also like to thank Rainer Klages for his new book (Klages 2007), which was very helpful when preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Robert Dorfman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dorfman, J.R. (2021). Chaotic Dynamics in Nonequilibrium Statistical Mechanics. In: Meyers, R.A. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_66-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_66-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics