Skip to main content

Additive Noise Tunes the Self-Organization in Complex Systems

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 237 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Arnold L (1998) Random dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bloemker D (2003) Amplitude equations for locally cubic non-autonomous nonlinearities. SIAM J Appl Dyn Syst 2(2):464–486

    Article  MathSciNet  Google Scholar 

  • Bloemker D, Hairer M, Pavliotis GA (2005) Modulation equations: stochastic bifurcation in large domains. Commun Math Phys 258:479–512

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boxler P (1989) A stochastic version of the center manifold theorem. Probab Theory Relat Fields 83:509–545

    Article  MathSciNet  MATH  Google Scholar 

  • Carr J (1981) Applications of center manifold theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Doiron B, Lindner B, Longtin A, Maler L, Bastian J (2004) Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys Rev Lett 93:048101

    Article  ADS  Google Scholar 

  • Drolet F, Vinals J (1998) Adiabatic reduction near a bifurcation in stochastically modulated systems. Phys Rev E 57(5):5036–5043

    Article  ADS  Google Scholar 

  • Drolet F, Vinals J (2001) Adiabatic elimination and reduced probability distribution functions in spatially extended systems with a fluctuating control parameter. Phys Rev E 64:026120

    Article  ADS  Google Scholar 

  • Fertonani A, Pirulli C, Miniussi C (2011) Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci 31(43):15416–15423

    Article  Google Scholar 

  • Fuchs A, Kelso J, Haken H (1992) Phase transitions in the human brain: spatial mode dynamics. Int J Bifurcation Chaos 2(4):917

    Article  MATH  Google Scholar 

  • Garcia-Ojalvo J, Sancho J (1999) Noise in spatially extended systems. Springer, New York

    Book  MATH  Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (1985) Light II – laser light dynamics. North Holland, Amsterdam

    Google Scholar 

  • Haken H (1996) Slaving principle revisited. Phys D 97:95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Haken H (2004) Synergetics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Herrmann C, Rach S, neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:279

    Article  Google Scholar 

  • Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. J Neurosci 36(19):5328–5339

    Article  Google Scholar 

  • Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, Berlin

    MATH  Google Scholar 

  • Hutt A (2008) Additive noise may change the stability of nonlinear systems. Europhys Lett 84(34):003

    Google Scholar 

  • Hutt A, Buhry L (2014) Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci 37(3):417–437

    Article  MathSciNet  Google Scholar 

  • Hutt A, Lefebvre J (2016) Stochastic center manifold analysis in scalar nonlinear systems involving distributed delays and additive noise. Markov Process Relat Fields 22:555–572

    MathSciNet  MATH  Google Scholar 

  • Hutt A, Longtin A, Schimansky-Geier L (2007) Additive global noise delays Turing bifurcations. Phys Rev Lett 98:230601

    Article  ADS  Google Scholar 

  • Hutt A, Longtin A, Schimansky-Geier L (2008) Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift–Hohenberg equation. Phys D 237:755–773

    Article  MathSciNet  MATH  Google Scholar 

  • Hutt A, Lefebvre J, Longtin A (2012) Delay stabilizes stochastic systems near an non-oscillatory instability. Europhys Lett 98:20004

    Article  ADS  Google Scholar 

  • Hutt A, Mierau A, Lefebvre J (2016) Dynamic control of synchronous activity in networks of spiking neurons. PLoS One 11(9):e0161488. https://doi.org/10.1371/journal.pone.0161488

    Article  Google Scholar 

  • Jirsa V, Friedrich R, Haken H (1995) Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram. Phys D 89:100–122

    Article  MATH  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela F (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  Google Scholar 

  • Lefebvre J, Hutt A (2013) Additive noise quenches delay-induced oscillations. Europhys Lett 102:60003

    Article  ADS  Google Scholar 

  • Lefebvre J, Hutt A, LeBlanc V, Longtin A (2012) Reduced dynamics for delayed systems with harmonic or stochastic forcing. Chaos 22:043121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lefebvre J, Hutt A, Knebel J, Whittingstall K, Murray M (2015) Stimulus statistics shape oscillations in nonlinear recurrent neural networks. J Neurosci 35(7):2895–2903

    Article  Google Scholar 

  • Lefebvre J, Hutt A, Frohlich F (2017) Stochastic resonance mediates the statedependent effect of periodic stimulation on cortical alpha oscillations. eLife 6:e32054

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  ADS  Google Scholar 

  • Schanz M, Pelster A (2003) Synergetic system analysis for the delay-induced Hopf bifurcation in the Wright equation. SIAM J Appl Dyn Syst 2:277–296

    Article  MathSciNet  MATH  Google Scholar 

  • Schoener G, Haken H (1986) The slaving principle for Stratonovich stochastic differential equations. Z Phys B 63:493–504

    Article  ADS  Google Scholar 

  • Terney D, Chaieb L, Moliadze V, Antal A, Paulus W (2008) Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 28(52):14147–14155

    Article  Google Scholar 

  • Xu C, Roberts A (1996) On the low-dimensional modelling of Stratonovich stochastic differential equations. Phys A 225:62–80

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hutt, A., Lefebvre, J. (2018). Additive Noise Tunes the Self-Organization in Complex Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_696-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_696-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics