Skip to main content

Additive Noise Tunes the Self-Organization in Complex Systems

  • Living reference work entry
  • First Online:
  • 237 Accesses

Glossary

Additive noise:

Random fluctuations that add to the phase space flow of model systems.

Center manifold theorem:

Mathematical theorem describing the slaving principle in complex systems.

Slaving principle:

Units in a complex system that interact nonlinearly with other units evolve on different time scales. Close to instability points, fast units obey the dynamics of slow units and are enslaved by them. Such units may be spatial modes in spatially extended systems or neural ensembles in neural populations.

Introduction

The dynamics of natural systems is complex, e.g., due to various processes and their interactions on different temporal and spatial scales. Several of such processes appear to be of random nature, i.e., they cannot be predicted by known laws. In this context, it is not necessary to know whether these processes are random in reality or whether we just do not know their deterministic law and they appear to be random. The insight that unknown laws of processes may be...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Arnold L (1998) Random dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bloemker D (2003) Amplitude equations for locally cubic non-autonomous nonlinearities. SIAM J Appl Dyn Syst 2(2):464–486

    Article  MathSciNet  Google Scholar 

  • Bloemker D, Hairer M, Pavliotis GA (2005) Modulation equations: stochastic bifurcation in large domains. Commun Math Phys 258:479–512

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boxler P (1989) A stochastic version of the center manifold theorem. Probab Theory Relat Fields 83:509–545

    Article  MathSciNet  MATH  Google Scholar 

  • Carr J (1981) Applications of center manifold theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Doiron B, Lindner B, Longtin A, Maler L, Bastian J (2004) Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys Rev Lett 93:048101

    Article  ADS  Google Scholar 

  • Drolet F, Vinals J (1998) Adiabatic reduction near a bifurcation in stochastically modulated systems. Phys Rev E 57(5):5036–5043

    Article  ADS  Google Scholar 

  • Drolet F, Vinals J (2001) Adiabatic elimination and reduced probability distribution functions in spatially extended systems with a fluctuating control parameter. Phys Rev E 64:026120

    Article  ADS  Google Scholar 

  • Fertonani A, Pirulli C, Miniussi C (2011) Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci 31(43):15416–15423

    Article  Google Scholar 

  • Fuchs A, Kelso J, Haken H (1992) Phase transitions in the human brain: spatial mode dynamics. Int J Bifurcation Chaos 2(4):917

    Article  MATH  Google Scholar 

  • Garcia-Ojalvo J, Sancho J (1999) Noise in spatially extended systems. Springer, New York

    Book  MATH  Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    MATH  Google Scholar 

  • Haken H (1985) Light II – laser light dynamics. North Holland, Amsterdam

    Google Scholar 

  • Haken H (1996) Slaving principle revisited. Phys D 97:95–103

    Article  MathSciNet  MATH  Google Scholar 

  • Haken H (2004) Synergetics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Herrmann C, Rach S, neuling T, Strüber D (2013) Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci 7:279

    Article  Google Scholar 

  • Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. J Neurosci 36(19):5328–5339

    Article  Google Scholar 

  • Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, Berlin

    MATH  Google Scholar 

  • Hutt A (2008) Additive noise may change the stability of nonlinear systems. Europhys Lett 84(34):003

    Google Scholar 

  • Hutt A, Buhry L (2014) Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci 37(3):417–437

    Article  MathSciNet  Google Scholar 

  • Hutt A, Lefebvre J (2016) Stochastic center manifold analysis in scalar nonlinear systems involving distributed delays and additive noise. Markov Process Relat Fields 22:555–572

    MathSciNet  MATH  Google Scholar 

  • Hutt A, Longtin A, Schimansky-Geier L (2007) Additive global noise delays Turing bifurcations. Phys Rev Lett 98:230601

    Article  ADS  Google Scholar 

  • Hutt A, Longtin A, Schimansky-Geier L (2008) Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift–Hohenberg equation. Phys D 237:755–773

    Article  MathSciNet  MATH  Google Scholar 

  • Hutt A, Lefebvre J, Longtin A (2012) Delay stabilizes stochastic systems near an non-oscillatory instability. Europhys Lett 98:20004

    Article  ADS  Google Scholar 

  • Hutt A, Mierau A, Lefebvre J (2016) Dynamic control of synchronous activity in networks of spiking neurons. PLoS One 11(9):e0161488. https://doi.org/10.1371/journal.pone.0161488

    Article  Google Scholar 

  • Jirsa V, Friedrich R, Haken H (1995) Reconstruction of the spatio-temporal dynamics of a human magnetoencephalogram. Phys D 89:100–122

    Article  MATH  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela F (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  Google Scholar 

  • Lefebvre J, Hutt A (2013) Additive noise quenches delay-induced oscillations. Europhys Lett 102:60003

    Article  ADS  Google Scholar 

  • Lefebvre J, Hutt A, LeBlanc V, Longtin A (2012) Reduced dynamics for delayed systems with harmonic or stochastic forcing. Chaos 22:043121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lefebvre J, Hutt A, Knebel J, Whittingstall K, Murray M (2015) Stimulus statistics shape oscillations in nonlinear recurrent neural networks. J Neurosci 35(7):2895–2903

    Article  Google Scholar 

  • Lefebvre J, Hutt A, Frohlich F (2017) Stochastic resonance mediates the statedependent effect of periodic stimulation on cortical alpha oscillations. eLife 6:e32054

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  ADS  Google Scholar 

  • Schanz M, Pelster A (2003) Synergetic system analysis for the delay-induced Hopf bifurcation in the Wright equation. SIAM J Appl Dyn Syst 2:277–296

    Article  MathSciNet  MATH  Google Scholar 

  • Schoener G, Haken H (1986) The slaving principle for Stratonovich stochastic differential equations. Z Phys B 63:493–504

    Article  ADS  Google Scholar 

  • Terney D, Chaieb L, Moliadze V, Antal A, Paulus W (2008) Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 28(52):14147–14155

    Article  Google Scholar 

  • Xu C, Roberts A (1996) On the low-dimensional modelling of Stratonovich stochastic differential equations. Phys A 225:62–80

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hutt, A., Lefebvre, J. (2018). Additive Noise Tunes the Self-Organization in Complex Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_696-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_696-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics