Skip to main content

Approximations to Algorithmic Probability

  • Living reference work entry
  • First Online:
  • 135 Accesses

A Computational Theory of Everything

Physicists have long been searching for a so-called Theory of Everything (ToE). Just as quantum mechanics explains the smallest phenomena, from microwaves to light, and general relativity explains the classical world, from gravity to space and time, a ToE would explain everything in the universe, from the smallest to the largest phenomena, in a single formulation.

Science has operated under the assumption and in light of strong evidence that the world is highly, if not completely, algorithmic in nature. If the world were not structured, our attempts to construct a body of theories from observations, to build what we consider ordered scientific models of the world, would have failed. That they have not is spectacular vindication of the validity of the world’s orderly character. We started out believing that the world was ruled by magic, and by irrational and emotional gods. However, thinkers from ancient civilizations such as China and India and,...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Delahaye J-P, Zenil H (2012) Numerical evaluation of algorithmic complexity for short strings: a glance into the innermost structure of randomness. Appl Math Comput 219(1):63–77

    MATH  Google Scholar 

  • Gauvrit N, Singmann H, Soler-Toscano F, Zenil H (2016) Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method. Behav Res Methods 48(1):314–329

    Article  Google Scholar 

  • Gauvrit N, Soler-Toscano F, Zenil H (2014) Natural scene statistics mediate the perception of image complexity. Vis Cogn 22(8):1084–1091

    Article  Google Scholar 

  • Gauvrit N, Zenil H, Delahaye J-P, Soler-Toscano F (2014) Algorithmic complexity for short binary strings applied to psychology: a primer. Behav Res Methods 46(3):732–744

    Article  Google Scholar 

  • Gauvrit N, Zenil H, Soler-Toscano F, Delahaye J-P, Brugger P (2017) Human behavioral complexity peaks at age 25. PLoS Comput Biol 13(4):e1005408

    Article  Google Scholar 

  • Gauvrit N, Zenil H, Tegnér J (2017) The information-theoretic and algorithmic approach to human, animal and artificial cognition. In: Dodig-Crnkovic G, Giovagnoli R (eds) Representation and reality: humans, animals and machines. Springer, New York

    Google Scholar 

  • Gregory J, Chaitin GJ (1966) On the length of programs for computing finite binary sequences. J ACM 13(4):547–569

    Article  MathSciNet  MATH  Google Scholar 

  • Kirchherr W, Li M, Vitányi P (1997) The miraculous universal distribution. Math Intell 19:7–15

    Article  MathSciNet  MATH  Google Scholar 

  • Levin LA (1974) Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Probl Peredachi Inf 10(3):30–35

    Google Scholar 

  • Schmidhuber J (2002) Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. Int J Found Comput Sci 13(4):587–612

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication parts i and ii. Bell Syst Tech J 27:379–423. and 623–656

    Article  MATH  Google Scholar 

  • Soler-Toscano F, Zenil H, Delahaye J-P, Gauvrit N (2014) Calculating Kolmogorov complexity from the output frequency distributions of small Turing machines. PLoS One 9(5):e96223

    Article  ADS  Google Scholar 

  • Solomonoff RJ (1964) A formal theory of inductive inference. Part i. Inf Control 7(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Tegnér J, Zenil H, Kiani NA, Ball G, Gomez-Cabrero D (2016) A perspective on bridging scales and design of models using low-dimensional manifolds and data-driven model inference. Phil Trans R Soc A 374(2080):20160144

    Article  ADS  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Zenil H (2011) The world is either algorithmic or mostly random, 2011. Winning 3rd place in the international essay context of the FQXi

    Google Scholar 

  • Zenil H (2013) A behavioural foundation for natural computing and a programmability test. In: Dodig-Crnkovic G, Giovagnoli R (eds) Computing nature. Springer, New York, pp 87–113

    Chapter  Google Scholar 

  • Zenil H (2014a) Programmability: a Turing test approach to computation. In: L. De Mol, G. Primiero, (eds) Turing in context, Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten (Belgian Academy of Sciences and Arts), Contactforum. Belgian Academy of Sciences and Arts

    Google Scholar 

  • Zenil H (2014b) What is nature-like computation? A behavioural approach and a notion of programmability. Philos Technol 27(3):399–421

    Article  Google Scholar 

  • Zenil H (2015) Algorithmicity and programmability in natural computing with the game of life as in silico case study. J Exp Theor Artif Intell 27(1):109–121

    Article  Google Scholar 

  • Zenil H, Delahaye J-P (2010) On the algorithmic nature of the world. In: Dodig-Crnkovic G, Burgin M (eds) Information and computation. World Scientific, London

    Google Scholar 

  • Zenil H, Kiani NA, Tegnér J (2016) Methods of information theory and algorithmic complexity for network biology. Semin Cell Dev Biol 51:32–43

    Article  Google Scholar 

  • Zenil H, Kiani N, Jesper T (2017) Low algorithmic complexity entropy-deceiving graphs. Phys Rev E 96(012308)

    Google Scholar 

  • Zenil H, Soler-Toscano F, Dingle K, Louis AA (2014) Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks. Physica A Stat Mech Appl 404:341–358

    Article  MathSciNet  Google Scholar 

  • Zenil H, Soler-Toscano F, Kiani NA, Hernández-Orozco S, Rueda-Toicen A (2016) A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity. arXiv preprint arXiv:1609.00110

    Google Scholar 

  • Zenil H. (2017) Algorithmic Data Analytics, Small Data Matters and Correlation versus Causation. In M. Ott, W. Pietsch, J. Wernecke (eds.), Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data (Computability of the World? Philosophy and Science in the Age of Big Data), Springer Verlag, pp. 453-475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Zenil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Zenil, H. (2017). Approximations to Algorithmic Probability. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_700-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_700-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics