Skip to main content

Application of Percolation Theory to Statistical Topographies

  • Living reference work entry
  • First Online:
  • 177 Accesses

Introduction

Percolation theory (Saberi 2015) provides a suitable platform to study the properties of real and artificial landscapes (Isichenko 1992). A landscape is a height profile {h(x)} usually defined on a square lattice where each cell’s elevation value at position x = (x, y) represents the average elevation over the entire footprint of the cell (site). Now imagine that the water is dripping uniformly over the landscape and fills it from the valleys to the mountains, letting the water flow out through the open boundaries. During the raining, watershed lines may also form which divide the landscape into different drainage basins – see Fig. 1. Watersheds play a fundamental role in geomorphology in, e.g., water management (Vorosmarty et al. 1998) and landslide and flood prevention (Lee and Lin 2006). For a given landscape represented as a digital elevation map (DEM), it is possible to determine the watershed lines based on the iterative application of invasion percolation (Fehr et...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Abete T, de Candia A, Lairez D, Coniglio A (2004) Percolation model for enzyme gel degradation. Phys Rev Lett 93:228301

    ADS  Google Scholar 

  • Achlioptas D, D’Souza RM, Spencer J (2009) Explosive percolation in random networks. Sci 323(5920):1453–1455

    Google Scholar 

  • Aharonson O, Zuber MT, Rothman DH (2001) Statistics of Mars’ topography from the Mars orbiter laser altimeter: slopes, correlations, and physical models. J Geophys Res Planets 106(E10):23723–23735

    Google Scholar 

  • Andrade JS Jr, Oliveira EA, Moreira AA, Herrmann HJ (2009) Fracturing the optimal paths. Phys Rev Lett 103:225503

    ADS  Google Scholar 

  • Araújo NAM, Herrmann HJ (2010) Explosive percolation via control of the largest cluster. Phys Rev Lett 105:035701

    ADS  Google Scholar 

  • Araújo AD, Moreira AA, Makse HA, Stanley HE, Andrade JS Jr (2001) Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations. Phys Rev E 66:046304

    ADS  Google Scholar 

  • Araújo AD, Moreira AA, Costa Filho RN, Andrade JS Jr (2003) Statistics of the critical percolation backbone with spatial long-range correlations. Phys Rev E 67:027102

    ADS  Google Scholar 

  • Baek SK, Kim BJ (2012) Critical condition of the water-retention model. Phys Rev E 85:032103

    ADS  Google Scholar 

  • Bak P (1996) How nature works. Copernicus, New York

    MATH  Google Scholar 

  • Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594

    ADS  Google Scholar 

  • Banavar JR, Colaiori F, Flammini A, Giacometti A, Maritan A, Rinaldo A (1997) Sculpting of a fractal river basin. Phys Rev Lett 78:4522

    ADS  Google Scholar 

  • Beffara V (2008) Is critical 2D percolation universal? In: In and out of equilibrium. 2, Progr. Probab., vol 60. Birkhäuser, Basel, pp 31–58

    Google Scholar 

  • Bell TH (1975) Statistical features of sea-floor topography. Deep-Sea Res 22:883–892

    Google Scholar 

  • Bhattacharjee SM, Seno F (2001) A measure of data collapse for scaling. J Phys A Math Gen 34(30):6375

    Google Scholar 

  • Binder K, Heermann DW (1997) Monte Carlo simulation in statistical physics. Springer, Berlin

    MATH  Google Scholar 

  • Boffetta G, Celani A, Dezzani D, Seminara A (2008) How winding is the coast of Britain? Conformal invariance of rocky shorelines. Geophys Res Lett 35:L03615

    ADS  Google Scholar 

  • Bollobás B (2001) Random graphs. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bollobás B, Riordan O (2006) Percolation. Cambridge University Press, New York

    Google Scholar 

  • Breyer SP, Scott Snow R (1992) Drainage basin perimeters: a fractal significance. Geomorphology 5(1–2):143–157

    Google Scholar 

  • Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res 90:12575–12582

    ADS  Google Scholar 

  • Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Nature (London) 464:1025

    ADS  Google Scholar 

  • Carr MH (1996) Water on mars. Oxford University Press, Oxford, UK, p 229

    Google Scholar 

  • Carr MH, Head JW (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res 108:5042

    Google Scholar 

  • Cieplak M, Giacometti A, Maritan A, Rinaldo A, Rodriguez-Iturbe I, Banavar JR (1998) Models of fractal river basins. J Stat Phys 91:1–15

    MATH  Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154:40–79

    ADS  Google Scholar 

  • Cohen R, Havlin S (2010) Complex networks: structure, robustness and function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Colaiori F, Flammini A, Maritan A, Banavar JR (1997) Analytical and numerical study of optimal channel networks. Phys Rev E 55:1298

    ADS  Google Scholar 

  • Coniglio A, Stanley HE, Klein W (1979) Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation. Phys Rev Lett 42:518

    ADS  Google Scholar 

  • D’Souza RM, Nagler J (2015) Anomalous critical and supercritical phenomena in explosive percolation. Nat Phys 11(7):531–538

    Google Scholar 

  • Daryaei E, Araújo NAM, Schrenk KJ, Rouhani S, Herrmann HJ (2012) Watersheds are Schramm-Loewner evolution curves. Phys Rev Lett 109:218701

    ADS  Google Scholar 

  • Du C, Satik C, Yortsos YC (1995) Percolation in a fractional Brownian motion lattice. AICHE J 42:2392

    Google Scholar 

  • Duplantier B (2000) Conformally invariant fractals and potential theory. Phys Rev Lett 84:1363

    ADS  MathSciNet  MATH  Google Scholar 

  • Fallah B, Saberi AA, Sodoudi S (2016) Emergence of global scaling behaviour in the coupled earth-atmosphere interaction. Sci Rep 6:34005

    ADS  Google Scholar 

  • Fan J, Liu M, Li L, Chen X (2012) Continuous percolation phase transitions of random networks under a generalized achlioptas process. Phys Rev E 85(6):061110

    Google Scholar 

  • Fan J, Meng J, Ashkenazy Y, Havlin S, Schellnhuber HJ (2018) Climate network percolation reveals the expansion and weakening of the tropical component under global warming. Proc Natl Acad Sci 115(52): E12128–E12134

    Google Scholar 

  • Fan J, Meng J, Saberi AA (2019) Percolation framework of the Earth’s topography. Phys Rev E 99:022304

    ADS  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:33

    Google Scholar 

  • Fehr E, Andrade Jr JS, da Cunha SD, da Silva LR, Herrmann HJ, Kadau D, . . ., Oliveira EA (2009) New efficient methods for calculating watersheds. J Stat Mech Theo Exper 9:P09007

    Google Scholar 

  • Fehr E, Kadau D, Andrade JS Jr, Herrmann HJ (2011a) Impact of perturbations on watersheds. Phys Rev Lett 106:048501

    ADS  Google Scholar 

  • Fehr E, Kadau D, Araújo NAM, Andrade JS Jr, Herrmann HJ (2011b) Scaling relations for watersheds. Phys Rev E 84:036116

    ADS  Google Scholar 

  • Fehr E, Schrenk KJ, Araújo NAM, Kadau D, Grassberger P, Andrade JS Jr, Herrmann HJ (2012) Corrections to scaling for watersheds, optimal path cracks, and bridge lines. Phys Rev E 86:011117

    ADS  Google Scholar 

  • Gagnon J-S, Lovejoy S, Schertzer D (2006) Multifractal earth topography. Nonlinear Proc Geophys 13:541–570

    ADS  Google Scholar 

  • Gao J, Buldyrev SV, Stanley HE, Havlin S (2012) Networks formed from interdependent networks. Nat Phys 8(1):40–48

    Google Scholar 

  • Gaonac’h H, Lovejoy S, Schertzer D (2003) Resolution dependence of infrared imagery of active thermal features at Kilauea Volcano. Int J Remote Sens 24:2323–2344

    Google Scholar 

  • Golden KM, Ackley SF, Lytle VI (1998) The percolation phase transition in sea ice. Science 282:2238–2241

    ADS  Google Scholar 

  • Harris AB (1974) Effect of random defects on the critical behaviour of Ising models. J Phys C 7:1671

    ADS  Google Scholar 

  • Harvey DC, Gaonac’h H, Lovejoy S, Stix J, Schertzer D (2002) Multifractal characterization of remotely sensed volcanic features: a case study from Kilauea volcano, Hawaii. Fractals 10:265–274

    Google Scholar 

  • Head JW et al (1998) Oceansinthepasthistory of Mars: tests fortheirpresenceusing Mars Orbiter Laser Altimeter (MOLA) data. Geophys Res Lett 25:4401–4404

    ADS  Google Scholar 

  • Head JW et al (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286:2134–2137

    ADS  Google Scholar 

  • Hergarten S, Neugebauer HJ (2001) Self-organized critical drainage networks. Phys Rev Lett 86:2689

    ADS  Google Scholar 

  • Herrmann HJ, Araújo NAM (2011) Watersheds and explosive percolation. Phys Procedia 15:37–43

    ADS  Google Scholar 

  • Hoshen J, Kopelman R (1976) Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys Rev B 14(8):3438

    Google Scholar 

  • Houdayer J, Hartmann AK (2004) Low-temperature behavior of two-dimensional Gaussian Ising spin glasses. Phys Rev B 70(1):014418

    Google Scholar 

  • Hu Y, Ksherim B, Cohen R, Havlin S (2011) Percolation in interdependent and interconnected networks: Abrupt change from second-to first-order transitions. Phys Rev E 84(6):066116

    Google Scholar 

  • Isichenko MB (1992) Percolation, statistical topography, and transport in random media. Rev Mod Phys 64(4):961

    ADS  MathSciNet  Google Scholar 

  • Ivanov MA, Head JW (2001) Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J Geophys Res 106:3275–3296

    ADS  Google Scholar 

  • Janke W, Weigel M (2004) Harris-Luck criterion for random lattices. Phys Rev B 69:144208

    ADS  Google Scholar 

  • Jensen HJ (1998) Self-organized criticality: emergent complex behavior in physical and biological systems. Cambridge University Press, New York

    Google Scholar 

  • Kardar M, Parisi G, Zhang YC (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889

    ADS  MATH  Google Scholar 

  • Kawashima N, Ito N (1993) Critical behavior of the three-dimensional±j model in a magnetic field. J Phys Soc Jpn 62(2):435–438

    Google Scholar 

  • Knackstedt MA, Sahimi M, Sheppard AP (2000) Invasion percolation with long-range correlations: firstorder phase transition and nonuniversal scaling properties. Phys Rev E 61:4920

    ADS  Google Scholar 

  • Knecht CL, Trump W, ben-Avraham D, Ziff RM (2012) Retention capacity of random surfaces. Phys Rev Lett 108:045703

    ADS  Google Scholar 

  • Kondev J, Henley CL (1995) Geometrical exponents of contour loops on random Gaussian surfaces. Phys Rev Lett 74:4580

    ADS  Google Scholar 

  • Kondev J, Henley CL, Salinas DG (2000) Nonlinear measures for characterizing rough surface morphologies. Phys Rev E 61:104

    ADS  Google Scholar 

  • Kucinskas AB, Turcotte DL, Huang J, Ford PG (1992) Fractal analysis of Venus topography in Tinatin Planatia and Ovda Regio. J Geophys Res 97:13635–13641

    ADS  Google Scholar 

  • Lee KT, Lin YT (2006) Flow analysis of landslide dammed lake watersheds: a case study. J Am Water Resour Assoc 42:1615

    Google Scholar 

  • Luo W, Cang X, Howard AD (2017) New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat Commun 8:15766

    ADS  Google Scholar 

  • Makse HA, Havlin S, Stanley HE (1995) Modelling urban growth patterns. Nature 377:608

    ADS  Google Scholar 

  • Makse HA, Andrade JS Jr, Batty M, Havlin S, Stanley HE (1998) Modeling urban growth patterns with correlated percolation. Phys Rev E 58:7054

    ADS  Google Scholar 

  • Makse HA, Andrade JS Jr, Stanley HE (2000) Tracer dispersion in a percolation network with spatial correlations. Phys Rev E 61:583

    ADS  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain. Science 156(3775):636–638

    ADS  Google Scholar 

  • Mandelbrot B (1975) Stochastic models for the earth’s relief, the shape and the fractal dimension of coastlines, and the number-area rule for islands. Proc Natl Acad Sci U S A 72:3825–3828

    ADS  MathSciNet  Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. W. H. Freeman, New York

    Google Scholar 

  • Mandre I, Kalda J (2011) Monte-Carlo study of scaling exponents of rough surfaces and correlated percolation. Eur Phys J B 83:107

    ADS  Google Scholar 

  • Mann U, Frost DJ, Rubie DC (2008) The wetting ability of Si-bearing liquid Fe-alloys in a solid silicate matrix-percolation during core formation under reducing conditions? Phys Earth Planet Inter 167:1–7

    ADS  Google Scholar 

  • Marinov VI, Lebowitz JL (2006) Percolation in the harmonic crystal and voter model in three dimensions. Phys Rev E 74:031120

    ADS  MathSciNet  Google Scholar 

  • Maritan A, Colaiori F, Flammini A, Cieplak M, Banavar JR (1996) Disorder, river patterns and universality. Science 272:984–988

    ADS  Google Scholar 

  • Morais PA, Oliveira EA, Araújo NAM, Herrmann HJ, Andrade JS Jr (2011) Fractality of eroded coastlines of correlated landscapes. Phys Rev E 84:016102

    ADS  Google Scholar 

  • Moreira AA, Oliveira CLN, Hansen A, Araújo NAM, Herrmann HJ, Andrade JS Jr (2012) Fracturing highly disordered materials. Phys Rev Lett 109:255701

    ADS  Google Scholar 

  • Nagler J, Levina A, Timme M (2011) Impact of single links in competitive percolation. Nat Phys 7(3):265–270

    Google Scholar 

  • Newman M (2010) Networks: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • Newman WI, Turcotte DL (1990) Cascade model for fluvial geomorphology. Geophys J Int 100:433–439

    ADS  Google Scholar 

  • Newman MEJ, Ziff RM (2000) Efficient Monte Carlo algorithm and high-precision results for percolation. Phys Rev Lett 85(19):4104

    Google Scholar 

  • Parker TJ, Saunders RS, Schneeberger DM (1989) Transitional morphology in west Deuteronilus Mensae, Mars: implications for modification of the lowland/upland boundary. Icarus 82:111–145

    ADS  Google Scholar 

  • Parker TJ, Gorsline DS, Saunders RS, Pieri DC, Schneeberger DM (1993) Coastal geomorphology of the Martian northern plains. J Geophys Res 98:11061–11078

    ADS  Google Scholar 

  • Pecknold S, Lovejoy S, Schertzer D (2001) Stratified multifractal magnetization and surface geomagnetic fields-II. Multifractal analysis and simulations. Geophys J Int 145:127–144

    ADS  Google Scholar 

  • Perotti CR, Rinaldi M (2011) Mars and Earth topography: a preliminary comparative analysis. Mem Soc Astron Ital 82:334

    ADS  Google Scholar 

  • Perron JT et al (2007) Evidence for an ancient martian ocean in the topography of deformed shorelines. Nature 447(7146):840

    ADS  Google Scholar 

  • Pilkington M, Todoeschuck JP (2004) Power-law scaling behavior of crustal density and gravity. Geophys Res Lett 31(9):L09606(1–4)

    Google Scholar 

  • Porto M, Havlin S, Schwarzer S, Bunde A (1997) Optimal path in strong disorder and shortest path in invasion percolation with trapping. Phys Rev Lett 79:4060

    ADS  Google Scholar 

  • Posé N, Schrenk KJ, Araújo NAM, Herrmann HJ (2014) Shortest path and Schramm-Loewner evolution. Sci Rep 4:5495

    ADS  Google Scholar 

  • Prakash S, Havlin S, Schwartz M, Stanley HE (1992) Structural and dynamical properties of long-range correlated percolation. Phys Rev A 46:R1724

    ADS  Google Scholar 

  • Richardson LF (1961) The problem of contiguity. Gen Syst Yearb 6:139–187

    Google Scholar 

  • Riordan O, Warnke L (2011) Explosive percolation is continuous. Sci 333(6040):322–324

    Google Scholar 

  • Rodriguez-Iturbe I, Rinaldo A (1997) Fractal River basins: chance and self-organization. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Saberi AA (2010) Geometrical phase transition on WO3 surface. Appl Phys Lett 97:154102

    ADS  Google Scholar 

  • Saberi AA (2013) Percolation description of the global topography of earth and moon. Phys Rev Lett 110:178501

    ADS  Google Scholar 

  • Saberi AA (2015) Recent advances in percolation theory and its applications. Phys Rep 578:1–32

    ADS  MathSciNet  MATH  Google Scholar 

  • Saberi AA, Rouhani S (2009) Scaling of clusters and winding angle statistics of Iso-height lines in twodimensional KPZ surface. Phys Rev E 79:036102

    ADS  Google Scholar 

  • Saberi AA, Niry MD, Fazeli SM, Tabar MRR, Rouhani S (2008a) Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface. Phys Rev E 77:051607

    ADS  Google Scholar 

  • Saberi AA, Rajabpour MA, Rouhani S (2008b) Conformal curves on WO3 surface. Phys Rev Lett 100:044504

    ADS  Google Scholar 

  • Saberi AA, Dashti-Naserabadi H, Rouhani S (2010) Classification of (2+1)-dimensional growing surfaces using Schramm-Loewner evolution. Phys Rev E 82:020101(R)

    ADS  Google Scholar 

  • Sahimi M (1994a) Long-range correlated percolation and flow and transport in heterogeneous porous media. J Phys I 4:1263–1268

    Google Scholar 

  • Sahimi M (1994b) Applications of percolation theory. Taylor and Francis, London

    Google Scholar 

  • Sahimi M (1995) Effect of long-range correlations on transport phenomena in disordered media. AICHE J 41:229–240

    Google Scholar 

  • Sahimi M (1998) Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Phys Rep 306:213–395

    ADS  MathSciNet  Google Scholar 

  • Sahimi M, Mukhopadhyay S (1996) Scaling properties of a percolation model with long-range correlations. Phys Rev E 54:3870

    ADS  Google Scholar 

  • Sandler N, Maei HR, Kondev J (2004) Correlated quantum percolation in the lowest Landau level. Phys Rev B 70:045309

    ADS  Google Scholar 

  • Sapoval B (1989) Fractals. Aditech, Paris

    MATH  Google Scholar 

  • Sapoval B, Baldassarri A, Gabrielli A (2004) Self-stabilized fractality of seacoasts through damped erosion. Phys Rev Lett 93:098501

    ADS  Google Scholar 

  • Sayles RS, Thomas TR (1978) Surface topography as a non-stationary random process. Nature 271:431–434

    ADS  Google Scholar 

  • Schmittbuhl J, Vilotte J-P, Roux S (1993) Percolation through self-affine surfaces. J Phys A 26:6115

    ADS  Google Scholar 

  • Schrenk KJ (2014) Discontinuous percolation transitions and lattice models of fractal boundaries and paths. PhD thesis, ETH Zurich

    Google Scholar 

  • Schrenk KJ, Araújo NAM, Herrmann HJ (2012a) How to share underground reservoirs. Sci Rep 2:751

    ADS  Google Scholar 

  • Schrenk KJ, Araújo NAM, Andrade Jr JS, Herrmann HJ (2012b) Fracturing ranked surfaces. Sci Rep 2:348

    ADS  Google Scholar 

  • Schrenk KJ, Posé N, Kranz JJ, van Kessenich LVM, Araújo NAM, Herrmann HJ (2013) Percolation with long-range correlated disorder. Phys Rev E 88:052102

    ADS  Google Scholar 

  • Schrenk KJ, Araújo NAM, Ziff RM, Herrmann HJ (2014) Retention capacity of correlated surfaces. Phys Rev E 89:062141

    ADS  Google Scholar 

  • Schwartz M (2001) End-to-end distance on contour loops of random Gaussian surfaces. Phys Rev Lett 86:1283

    ADS  Google Scholar 

  • Shannon MC, Agee CB (1998) Percolation of core melts at lower mantle conditions. Science 280:1059–1061

    ADS  Google Scholar 

  • Smirnov S (2001) Critical percolation in the plane: conformal invariance, Cardy’s formula. C R Acad Sci 333(3):239–244

    MathSciNet  MATH  Google Scholar 

  • Smith DE et al (1999) The global topography of Mars and implications for surface evolution. Science 284:1495–1503

    ADS  Google Scholar 

  • Sornette D (2000) Critical phenomena in natural sciences. Springer, Heidelberg

    MATH  Google Scholar 

  • Stark CP (1991) An invasion percolation model of drainage network evolution. Nature (London) 352:423

    ADS  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    MATH  Google Scholar 

  • Sun N (2011) Conformally invariant scaling limits in planar critical percolation. Probab Surv 8:155–209

    Google Scholar 

  • Vening Meinesz FA (1951) A remarkable feature of the earth’s topography. Proc K Ned Akad Wet Sér B 54:212–228

    Google Scholar 

  • Vorosmarty CJ, Federer CA, Schloss AL (1998) Evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207:147

    Google Scholar 

  • Wegener A (1966) In: Biram J (ed) The origin of continents and oceans. Dover, New York. translated from the 1929 4th German ed

    Google Scholar 

  • Weinrib A (1984) Long-range correlated percolation. Phys Rev B 29:387

    ADS  MathSciNet  Google Scholar 

  • Weinrib A, Halperin BI (1983) Critical phenomena in systems with long-range-correlated quenched disorder. Phys Rev B 27:413

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Saberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Saberi, A.A. (2020). Application of Percolation Theory to Statistical Topographies. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_747-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_747-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics