Skip to main content

Applications of Lump and Interaction Soliton Solutions to the Model of Liquid Crystals and Nerve Fibers

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Introduction

In solitons theory, nonlinear partial differential equations (NLPDEs) are booming in many scientific fields such as ocean dynamics, plasma physics, fluid dynamics, hydrodynamics and theory of turbulence, optical fibers, chemical physics, chaos theory, and many others. Exact solutions of the nonlinear physical problems are significant and a vital topic in real life while the soliton-based algorithms are promising methods to evaluate the solutions of different nonlinear real-world problems (Kudryashov 2021; Khater et al. 2000, 2006a,b; Helal and Seadawy 2009; Rizvi et al. 2021; Tariq et al. 2021a,b; Ahmed et al. 2021; Ali et al. 2021). Previously, many scientists devoted their attention to compute the solution of NLPDEs such as: nonlocal nonlinearity (Kudryashov 2021), variational-based approach (Khater et al. 2000), He’s variational method (Khater et al. 2006a), direct algebraic technique (Khater et al. 2006b), bilinear approach (Helal and Seadawy 2009), HBM technique...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ahmed I, Seadawy AR, Lu D (2019) M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation. Phys Scr 94:055205. (7pp)

    Article  ADS  Google Scholar 

  • Ahmed S, Ashraf R, Seadawy AR, Rizvi STR, Younis M, Althobaiti A, El-Shehawi AM (2021) Lump, multi-wave, kinky breathers, interactional solutions and stability analysis for general (2+1)-rth dispersionless Dym equation. Results Phys 25:104160

    Article  Google Scholar 

  • Ali I, Ali K, Rizvi STR (2020) Conserved quantities for compressional dispersive Alfvn and soliton dynamics with non-local nonlinearity. Phys Scr 95(4):045209

    Article  ADS  Google Scholar 

  • Ali I, Seadawy AR, Rizvi STR, Younis M (2021) Painleve analysis for various nonlinear Schrodinger dynamical equations. Int J Mod Phys B 35:2150038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Alquran M, Sulaiman TA, Yusuf A (2021) Kink-soliton, singular-kink-soliton and singular-periodic solutions for a new two-mode version of the Burger-Huxley model: applications in nerve fibers and liquid crystals. Opt Quant Electron 53(5):1–11

    Article  Google Scholar 

  • Batiha B, Noorani MSM, Hashim I (2008) Application of variational iteration method to the generalized Burgers-Huxley equation. Chaos Solitons Fractals 36(3):660–663

    Article  ADS  MATH  Google Scholar 

  • Bildik N, Deniz S (2018) Comparative study between optimal homotopy asymptotic method and perturbation-iteration technique for different types of nonlinear equations. Iran J Sci Technol Trans A 42(2):647–654

    Article  MathSciNet  MATH  Google Scholar 

  • Celik I (2012) Haar wavelet method for solving generalized Burgers-Huxley equation. Arab J Math Sci 18(1):25–37

    MathSciNet  MATH  Google Scholar 

  • Celik I (2016) Chebyshev wavelet collocation method for solving generalized Burgers-Huxley equation. Math Methods Appl Sci 39(3):366–377

    Article  MathSciNet  MATH  Google Scholar 

  • Darvishi MT, Kheybari S, Khani F (2008) Spectral collocation method and Darvishis preconditionings to solve the generalized Burgers-Huxley equation. Commun Nonlinear Sci Numer Simul 13(10):2091–2103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Abbaszadeh M, Mohebbi A (2015) An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations. Eng Anal Bound Elem 50:412–434

    Article  MathSciNet  MATH  Google Scholar 

  • Foroutan M, Manafian J, Ranjbaran A (2018) Lump solution and its interaction to (3 + 1)-D potential-YTSF equation. Nonlinear Dyn 92:2077–2092

    Article  Google Scholar 

  • Ge J, Du Z (2020) The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl Math Lett 103:106202

    Article  MathSciNet  MATH  Google Scholar 

  • Ghaffar A, Ali A, Ahmed S, Akram S, Baleanu D, Nisar KS (2020) A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order. Adv Differ Equ 2020(1):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari B, Nisar KS, Aldhaifallah M (2020) Abundant solitary wave solutions to an extended nonlinear Schrodinger’s equation with conformable derivative using an efficient integration method. Adv Differ Equ 2020(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Hashim I, Noorani MSM, Al-Hadidi MS (2006) Solving the generalized Burgers-Huxley equation using the Adomian decomposition method. Math Comput Model 43(11–12):1404–1411

    Article  MathSciNet  MATH  Google Scholar 

  • He JH (2020) Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation. Results Phys 17:103031

    Article  Google Scholar 

  • Helal MA, Seadawy AR (2009) Variational method for the derivative nonlinear Schrodinger equation with computational applications. Phys Scr 80:350–360

    Article  MATH  Google Scholar 

  • Helal MA, Seadawy AR (2011) Exact soliton solutions of an D-dimensional nonlinear Schrodinger equation with damping and diffusive terms. Z Angew Math Phys (ZAMP) 62:839–847

    Article  MathSciNet  MATH  Google Scholar 

  • Helal MA, Seadawy AR (2012) Benjamin-Feir-instability in nonlinear dispersive waves. Comput Math Appl 64:3557–3568

    Article  MathSciNet  MATH  Google Scholar 

  • Helal MA, Seadawy AR, Ibrahim RS (2013) Variational principle for Zakharov-Shabat equations in two-dimensions. Appl Math Comput 219:5635–5648

    MathSciNet  MATH  Google Scholar 

  • Helal MA, Seadawy AR, Zekry MH (2014) Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl Math Comput 232:1094–1103

    MathSciNet  MATH  Google Scholar 

  • Helal MA, Seadawy AR, Zekry MH (2017) Stability analysis solutions for the sixth-order nonlinear Boussinesq water wave equations in two-dimensions. Chin J Phys 55:378–385

    Article  Google Scholar 

  • Hyder AA, Barakat MA (2020) General improved Kudryashov method for exact solutions of nonlinear evolution equations in mathematical physics. Phys Scr 95(4):045212

    Article  ADS  Google Scholar 

  • Islam W, Younis M, Rizvi STR (2017) Optical solitons with time fractional nonlinear Schrodinger equation and competing weakly nonlocal nonlinearity. Optik 130:562–567

    Article  ADS  Google Scholar 

  • Ismael HF, Bulut H, Baskonus HM (2020) Optical soliton solutions to the Fokas-Lenells equation via sine-Gordon expansion method and (m + (G/G))-expansion method. Pramana 94(1):35

    Google Scholar 

  • James AJ, Konik RM, Lecheminant P, Robinson NJ, Tsvelik AM (2018) Non-perturbative methodologies for low-dimensional strongly-correlated systems: from non-abelian Bosonization to truncated spectrum methods. Rep Prog Phys 81(4):046002

    Article  ADS  MathSciNet  Google Scholar 

  • Khater AH, Helal MA, Seadawy AR (2000) General soliton solutions of n-dimensional nonlinear Schrodinger equation. IL Nuovo Cimento 115B:1303–1312

    ADS  MathSciNet  Google Scholar 

  • Khater AH, Callebaut DK, Helal MA, Seadawy AR (2006a) Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line. Eur Phys J D 39:237–245

    Article  ADS  Google Scholar 

  • Khater AH, Callebaut DK, Helal MA, Seadawy AR (2006b) General soliton solutions for nonlinear dispersive waves in convective type instabilities. Phys Scr 74:384–393

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kudryashov NA (2020a) Highly dispersive solitary wave solutions of perturbed nonlinear Schrodinger equations. Appl Math Comput 371:124972

    MathSciNet  MATH  Google Scholar 

  • Kudryashov NA (2020b) Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 206:163550

    Article  ADS  Google Scholar 

  • Kudryashov NA (2021) Solitary waves of the non-local Schrodinger equation with arbitrary refractive index. Optik 231:166443

    Article  ADS  Google Scholar 

  • Li BQ, Ma YL (2018) Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid. Comput Math Appl 76(1):204–214

    Article  MathSciNet  MATH  Google Scholar 

  • Lu D, Seadawy AR, Iqbal M (2018) Mathematical physics via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys 11:1161–1171

    Article  ADS  Google Scholar 

  • Manafian J, Lakestani M (2015) Solitary wave and periodic wave solutions for Burgers, Fisher, Huxley and combined forms of these equations by the \( \left(\frac{G^{\prime }}{G}\right) \)-expansion method. Pramana 85(1):31–52

    Google Scholar 

  • Rizvi STR, Ali K, Ahmad M (2020) Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method. Optik 204:164181

    Article  ADS  Google Scholar 

  • Rizvi STR, Seadawy AR, Younis M, Javed I, Iqbal H (2021) Lump and optical dromions for paraxial nonlinear Schrodinger equation. Int J Mod Phys B 35(05):2150078

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Seadawy AR, Cheemaa N (2019) Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrodinger equation in nonlinear optics. Mod Phys Lett B 33(18):1950203

    Article  ADS  MathSciNet  Google Scholar 

  • Seadawy AR, Iqbal M, Lu D (2019) Application of mathematical methods on the ion sound and Langmuir waves dynamical systems. Pramana – J Phys 93:Article number: 10

    Article  ADS  Google Scholar 

  • Seadawy AR, Asghar A, Baleanu D (2020) Transmission of high-frequency waves in a tranquil medium with general form of the Vakhnenko dynamical equation. Physica Scripta 95:095208

    Article  ADS  Google Scholar 

  • Tariq KU, Zabihi A, Rezazadeh H, Younis M, Rizvi STR, Ansari R (2021a) On new closed form solutions: the (2 + 1)-dimensional Bogoyavlenskii system. Mod Phys Lett B 35(09):2150150

    Article  ADS  MathSciNet  Google Scholar 

  • Tariq KU, Zainab H, Seadawy AR, Younis M, Rizvi STR, Abd Allah AM (2021b) On some novel optical wave solutions to the paraxial M-fractional nonlinear Schrodinger dynamical equation. Opt Quant Electron 53(5):1–14

    Article  Google Scholar 

  • Tian SF (2020) Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Appl Math Lett 100:106056

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H (2018) Lump and interaction solutions to the (2 + 1)-dimensional Burgers equation. Appl Math Lett 85:27–34

    Article  MathSciNet  MATH  Google Scholar 

  • Wang KJ (2021) Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. Fractals 29(2):2150044-1246

    Article  ADS  MATH  Google Scholar 

  • Wang XY, Zhu ZS, Lu YK (1990) Solitary wave solutions of the generalised Burgers-Huxley equation. J Phys A Math Gen 23(3):271

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang GW, Liu XQ, Zhang YY (2013) New explicit solutions of the generalized Burgers-Huxley equation. Vietnam J Math 41(2):161–166

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XB, Tian SF, Xua MJ, Zhang TT (2016) On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation. Appl Math Comput 283:216–233

    MathSciNet  MATH  Google Scholar 

  • WaZhou Y, Manukure S, Ma WX (2019) Lump and lump-soliton solutions to the Hirota Satsuma equation. Commun Nonlinear Sci Numer Simul 68:56–62

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wazwaz AM (2005) Travelling wave solutions of generalized forms of Burgers, BurgersKdV and Burgers-Huxley equations. Appl Math Comput 169(1):639–656

    MathSciNet  MATH  Google Scholar 

  • Wu P, Zhang Y, Muhammad I, Yin Q (2018) Lump, periodic lump and interaction lump stripe solutions to the (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation. Mod Phys Lett B 32(07):1850106

    Article  ADS  MathSciNet  Google Scholar 

  • Yefimova OY, Kudryashov NA (2004) Exact solutions of the Burgers-Huxley equation. J Appl Math Mech 3(68):413–420

    Article  MathSciNet  Google Scholar 

  • Younas U, Seadawy AR, Younis M, Rizvi STR (2020) Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves. Chin J Phys 68:348–364

    Article  MathSciNet  Google Scholar 

  • Yu DN, He JH, Garca AG (2019) Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. J Low Freq Noise Vibr Active Control 38(3):1540–1554

    Article  Google Scholar 

  • Zkan YS, Seadawy AR, Yaar E (2021) Multi-wave, breather and interaction solutions to (3+1) dimensional Vakhnenko-Parkes equation arising at propagation of high-frequency waves in a relaxing medium. J Taibah Univ Sci 15(1):666–678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Seadawy, A.R., Rizvi, S.T.R., Ahmed, S., Younis, M. (2022). Applications of Lump and Interaction Soliton Solutions to the Model of Liquid Crystals and Nerve Fibers. In: Meyers, R.A. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_769-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_769-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics