Skip to main content

Antibody Modeling, Engineering, and Design

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 364 Accesses

Introduction

Antibodies, which are primary components of adaptive immunity, are responsible for the body’s recognition of foreign material and subsequent elicitation of immune response to clear these substances. The specific determinant on the antigen that is recognized and bound by the antibody is called the epitope. The region of the antibody that binds the epitope is called the paratope. The immune system can generate a specific binder for virtually any molecular structure by reshuffling and mutating a set of genes that encodes fragments of the antibody. These genes are known as V, D, and J. Over the last few decades, antibodies have become a major reagent in biotechnology and biomedical research and the fastest growing type of therapeutics (Carter and Lazar 2017; Ecker et al. 2015). The fact that antibodies can bind almost any structure is related to the nature of the antibody three-dimensional structure. While there are several classes, also known as isotypes, of antibodies in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almagro JC, Teplyakov A, Luo J, Sweet RW, Kodangattil S, Hernandez-Guzman F, Gilliland GL (2014) Second antibody modeling assessment (AMA-II). Proteins 82(8):1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Baran D, Pszolla MG, Lapidoth GD, Norn C, Dym O, Unger T, Albeck S, Tyka MD, Fleishman SJ (2017) Principles for computational design of binding antibodies. Proc Natl Acad Sci USA 114(41): 10900–10905

    Article  CAS  PubMed  Google Scholar 

  • Bujotzek A, Dunbar J, Lipsmeier F, Schäfer W, Antes I, Deane CM, Georges G (2015) Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 83(4):681–695

    Article  CAS  PubMed  Google Scholar 

  • Burkovitz A, Sela-Culang I, Ofran Y (2014) Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. FEBS J 281(1):306–319

    Article  CAS  PubMed  Google Scholar 

  • Carter PJ, Lazar GA (2017) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17:197

    Article  CAS  PubMed  Google Scholar 

  • Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H (2006) Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15(5):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar J, Fuchs A, Shi J, Deane CM (2013) ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 26(10):611–620

    Article  CAS  PubMed  Google Scholar 

  • Dunbrack RL (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16(3): 374–384

    Article  CAS  PubMed  Google Scholar 

  • Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Entzminger KC, Hyun JM, Pantazes RJ, Patterson-Orazem AC, Qerqez AN, Frye ZP, Hughes RA, Ellington AD, Lieberman RL, Maranas CD, Maynard JA (2017) De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Sci Rep 7(1):10295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farady CJ, Sellers BD, Jacobson MP, Craik CS (2009) Improving the species cross-reactivity of an antibody using computational design. Bioorg Med Chem Lett 19(14):3744–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17(4):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Kurgan L (2014) Computational prediction of B cell epitopes from antigen sequences. Methods Mol Biol 1184:197–215

    Article  CAS  PubMed  Google Scholar 

  • Glanville J, D’Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury AR (2015) Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 33:146–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith-Fischman S, Honig B (2003) Structural genomics: computational methods for structure analysis. Protein Sci 12(9):1813–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromiha MM, Yugandhar K, Jemimah S (2017) Protein-protein interactions: scoring schemes and binding affinity. Curr Opin Struct Biol 44:31–38

    Article  CAS  PubMed  Google Scholar 

  • Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C (2017) Computationally-driven identification of antibody epitopes. elife 6:e29023

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilambi KP, Gray JJ (2017) Structure-based cross-docking analysis of antibody-antigen interactions. Sci Rep 7(1):8145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig P, Lee CV, Walters BT, Janakiraman V, Stinson J, Patapoff TW, Fuh G (2017a) Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding. Proc Natl Acad Sci USA 114(4):E486–E495

    Article  CAS  PubMed  Google Scholar 

  • Koenig P, Sanowar S, Lee CV, Fuh G (2017b) Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning. MAbs 9(6):959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S, Schröter C, Sellmann C, Hock B, Kolmar H (2017) Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol 45:10–16

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk K, Baker T, Shi J, Deane CM (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26(10):621–629

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk K, Liu X, Baker T, Shi J, Deane CM (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30(16):2288–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunik V, Ofran Y (2013) The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 26:599

    Article  CAS  PubMed  Google Scholar 

  • Lapidoth GD, Baran D, Pszolla GM, Norn C, Alon A, Tyka MD, Fleishman SJ (2015) AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83(8):1385–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leem J, Dunbar J, Georges G, Shi J, Deane CM (2016) ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8(7):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lensink MF, Velankar S, Wodak SJ (2016) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359

    Article  CAS  PubMed  Google Scholar 

  • Li T, Pantazes RJ, Maranas CD (2014) OptMAVEn – a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS One 9(8):e105954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindl T (1996) Development of human monoclonal antibodies: a review. Cytotechnology 21(3):183–193

    Article  CAS  PubMed  Google Scholar 

  • Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25(10):1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JK (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3(4): 113–116

    Article  Google Scholar 

  • Liu X, Taylor RD, Griffin L, Coker SF, Adams R, Ceska T, Shi J, Lawson AD, Baker T (2017) Computational design of an epitope-specific Keap1 binding antibody using hotspot residues grafting and CDR loop swapping. Sci Rep 7:41306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24(17):1953–1954

    Article  CAS  PubMed  Google Scholar 

  • Marks C, Deane CM (2017) Antibody H3 structure prediction. Comput Struct Biotechnol J 15:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marze NA, Lyskov S, Gray JJ (2016) Improved prediction of antibody VL-VH orientation. Protein Eng Des Sel 29(10):409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norn CH, Lapidoth G, Fleishman SJ (2017) High-accuracy modeling of antibody structures by a search for minimum-energy recombination of backbone fragments. Proteins 85(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406(2):228–256

    Article  CAS  PubMed  Google Scholar 

  • Ofran Y, Schlessinger A, Rost B (2008) Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes. J Immunol 181(9):6230–6235

    Article  CAS  PubMed  Google Scholar 

  • Pantazes RJ, Maranas CD (2010) OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. Protein Eng Des Sel 23(11):849–858

    Article  CAS  PubMed  Google Scholar 

  • Poosarla VG, Li T, Goh BC, Schulten K, Wood TK, Maranas CD (2017) Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol Bioeng 114(6):1331–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regep C, Georges G, Shi J, Popovic B, Deane CM (2017) The H3 loop of antibodies shows unique structural characteristics. Proteins 85(7):1311–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sela-Culang I, Alon S, Ofran Y (2012) A systematic comparison of free and bound antibodies reveals binding-related conformational changes. J Immunol 189(10):4890–4899

    Article  CAS  PubMed  Google Scholar 

  • Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sela-Culang I, Benhnia MR, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S, Xiang Y, Zajonc D, Crotty S, Ofran Y, Peters B (2014) Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure 22(4):646–657

    Article  CAS  PubMed  Google Scholar 

  • Sela-Culang I, Ashkenazi S, Peters B, Ofran Y (2015) PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics 31(8):1313–1315

    Article  PubMed  Google Scholar 

  • Sheehan J, Marasco WA (2015) Phage and yeast display. Microbiol Spectr 3(1):AID-0028-2014

    Article  CAS  PubMed  Google Scholar 

  • Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37(Web Server):W474–W479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirin S, Apgar JR, Bennett EM, Keating AE (2016) AB-bind: antibody binding mutational database for computational affinity predictions. Protein Sci 25(2):393–409

    Article  CAS  PubMed  Google Scholar 

  • Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ (2014) Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82(8):1611–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrenbeck EE, Faber MS, Whitehead TA (2017) Deep sequencing methods for protein engineering and design. Curr Opin Struct Biol 45:36–44

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Kroe-Barrett R, Singh S, Roberts CJ, Laue TM (2017) IgG cooperativity – is there allostery? Implications for antibody functions and therapeutic antibody development. MAbs 9(8):1231–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Feng T, Xu L, Sun H, Pan P, Li Y, Li D, Hou T (2016) Recent advances in protein-protein docking. Curr Drug Targets 17(14):1586–1594

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanay Ofran .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies’ Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fischman, S., Ofran, Y. (2018). Antibody Modeling, Engineering, and Design. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_10083-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_10083-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics