Skip to main content

Gap Junction Proteins (Connexins, Pannexins, and Innexins)

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Gap Junctions

Gap junctions are recognized structurally by roughly parallel appositional cell membranes separated by a “gap” of 2–4 nm; in freeze fracture, they appear as plaques of hexameric particles in the membrane (see Scemes and Spray 2008). Three differences between gap junctions structures in vertebrates and invertebrates were noted in early electron microscope studies (Epstein and Gilula 1977; see also Skerrett and Williams 2017). Invertebrate gap junctions have wider “gaps,” larger particles, and tend to cleave with the E face in freeze fracture replicas. The rather tight clustering of the particles at punctate junctional contacts is likely due to the strong and irreversible head to head binding of hexamers (termed connexons, innexons, or pannexons depending on protein composition, see below) that pulls appositional membranes closely together (Fig. 1).

Fig. 1
figure 1

Gap Junction structure. Schematic drawing of a longitudinal section of two gap junction channels formed by the docking...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bennett MV, Contreras JE, Bukauskas FF, Saez JC (2003) New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci 26:610–617

    Article  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  CAS  Google Scholar 

  • del Corsso C, Srinivas M, Urban-Maldonado M, Moreno AP, Fort AG, Fishman GI, Spray DC (2006) Transfection of mammalian cells with connexins and measurement of voltage sensitivity of their gap junctions. Nat Protoc 1:1799–1809

    Article  Google Scholar 

  • Dobrowolski R, Willecke K (2009) Connexin-caused genetic diseases and corresponding mouse models. Antioxid Redox Signal 11:283–295

    Article  CAS  Google Scholar 

  • Epstein ML, Gilula NB (1977) A study of communication specificity between cells in culture. J Cell Biol 75(3): 769–787

    Article  CAS  Google Scholar 

  • Fort AG, Murray JW, Dandachi N, Davidson MW, Dermietzel R, Wolkoff AW, Spray DC (2011) In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem 286:22875–22885

    Article  CAS  Google Scholar 

  • Fraser SE, Green CR, Bode HR, Gilula NB (1987) Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science 237:49–55

    Article  CAS  Google Scholar 

  • Iglesias R, Spray DC, Scemes E (2009) Mefloquine blockade of Pannexin1 currents: resolution of a conflict. Cell Commun Adhes 16:131–137

    Article  CAS  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  Google Scholar 

  • Mire P, Nasse J, Venable-Thibodeaux S (2000) Gap junctional communication in the vibration-sensitive response of sea anemones. Hear Res 144:109–123

    Article  CAS  Google Scholar 

  • Obaid AL, Socolar SJ, Rose B (1983) Cell-to-cell channels with two independently regulated gates in series: analysis of junctional conductance modulation by membrane potential, calcium, and pH. J Membr Biol 73(1):69–89

    Article  CAS  Google Scholar 

  • Pfenniger A, Wohlwend A, Kwak BR (2011) Mutations in connexin genes and disease. Eur J Clin Invest 41:103–116

    Article  CAS  Google Scholar 

  • Qiu F, Dahl G (2009) A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. Am J Physiol Cell Physiol 296:C250–C255

    Article  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  Google Scholar 

  • Scemes E, Spray DC (2008) Connexin expression (gap junctions and hemichannels) in astrocytes. In: Parpura V, Haydon PG (eds) Astrocytes in (patho)physiology of the nervous system. Springer, New York, pp 107–150

    Google Scholar 

  • Scemes E, Velísková J (2017) Exciting and not so exciting roles of pannexins. Neurosci Lett. https://doi.org/10.1016/j.neulet.2017.03.010. pii: S0304-3940(17)30220-3

    Article  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol 3:199–208

    Article  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560

    Article  CAS  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  CAS  Google Scholar 

  • Skerrett IM, Williams JB (2017) A structural and functional comparison of gap junction channels composed of connexins and innexins. Dev Neurobiol 77:522–547

    Article  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, Macvicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • Spray DC, Harris AL, Bennett MV (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    Article  CAS  Google Scholar 

  • Spray DC, Rozental R, Srinivas M (2002) Prospects for rational development of pharmacological gap junction channel blockers. Curr Drug Targets 3:455–464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Spray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scemes, E., Spray, D.C. (2019). Gap Junction Proteins (Connexins, Pannexins, and Innexins). In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_365-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_365-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics