Skip to main content

Alternative Splicing

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Synonyms

Differential splicing; Splicing

Definition

Alternative splicing describes the processes that allow the generation of different forms of mature mRNA (messenger RNA) from a single gene.

Introduction

Alternative Splicing

Splicing is a mechanism by which the transcribed exons of a gene are combined into mature mRNA transcripts. The process of generating different transcripts via distinct exon combinations is known as alternative splicing.

Alternative splicing has been shown to be present at the transcriptional level in almost all multi-exon genes (Wang et al. 2008), and these different mRNA products may be translated into different protein isoforms, potentially allowing for the generation of multiple proteins from a single coding gene. An extreme example of the diversity that alternative splicing can achieve is the Drosophila Dscam gene, which could in theory encode 38,016 distinct spliced variants, nearly three times the total number of genes in Drosophila (Black 2000).

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  Google Scholar 

  • Abascal F et al (2015) Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level. PLoS Comput Biol 11(6):e1004325

    Article  Google Scholar 

  • Bhuiyan SA et al (2018) Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics 19:637

    Article  Google Scholar 

  • Black DL (2000) Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103(3):367–370

    Article  CAS  Google Scholar 

  • Blencowe BJ (2017) The relationship between alternative splicing and proteomic complexity. Trends Biochem Sci 42(6):407–408

    Article  CAS  Google Scholar 

  • Crawford JB, Patton JG (2006) Activation of alpha-tropomyosin exon 2 is regulated by the SR protein 9G8 and heterogeneous nuclear ribonucleoproteins H and F. Mol Cell Biol 26(23):8791–8802

    Article  CAS  Google Scholar 

  • Ezkurdia I et al (2012) Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function. Mol Biol Evol 29(9):2265–2283

    Article  CAS  Google Scholar 

  • Ezkurdia I et al (2015) Most highly expressed protein-coding genes have a single dominant isoform. J Proteome Res 14(4):1880–1887

    Article  CAS  Google Scholar 

  • Frankish A et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47(D1):D766–D773

    Article  CAS  Google Scholar 

  • Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617

    Article  CAS  Google Scholar 

  • Hu Z et al (2015) Revealing missing human protein isoforms based on ab initio prediction, RNA-seq and proteomics. Sci Rep 5:10940

    Article  Google Scholar 

  • Inada T (2016) The ribosome as a platform for mRNA and nascent polypeptide quality control. Trends Biochem Sci. p. S0968-0004(16)30151-7

    Google Scholar 

  • Kelemen O et al (2013) Function of alternative splicing. Gene 514:1–30

    Article  CAS  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  CAS  Google Scholar 

  • Kondrashov FA, Koonin EV (2001) Origin of alternative splicing by tandem exon duplication. Hum Mol Genet 10:2661–2669

    Article  CAS  Google Scholar 

  • Lareau LF, Brenner SE (2015) Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol Biol Evol 32(4):1072–1079

    Article  CAS  Google Scholar 

  • Liu T, Lin K (2015) The distribution pattern of genetic variation in the transcript isoforms of the alternatively spliced protein-coding genes in the human genome. Mol BioSyst 11:1378–1388

    Article  CAS  Google Scholar 

  • López-Bigas N et al (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579(9):1900–1903

    Article  Google Scholar 

  • McIntyre LM et al (2006) Sex-specific expression of alternative transcripts in Drosophila. Genome Biol 7(8):R79

    Article  Google Scholar 

  • Pajares MJ et al (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 8(4):349–357

    Article  CAS  Google Scholar 

  • Punta M et al (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  Google Scholar 

  • Rodriguez JM et al (2018) APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Res 46(D1):D213–D217

    Article  CAS  Google Scholar 

  • Sammeth M, Foissac S, Guigó R (2008) A general definition and nomenclature for alternative splicing events. PLoS Comput Biol 4(8):e1000147

    Article  Google Scholar 

  • Tilgner H et al (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16(9):996–1001

    Article  CAS  Google Scholar 

  • Tress M et al (2008) Proteomics studies confirm the presence of alternative protein isoforms on a large scale. Genome Biol 9(11):R162

    Article  Google Scholar 

  • Tress ML, Abascal F, Valencia A (2017a) Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci 42(2):98–110

    Article  CAS  Google Scholar 

  • Tress ML, Abascal F, Valencia A (2017b) Most alternative isoforms are not functionally important. Trends Biochem Sci 42(6):408–410

    Article  CAS  Google Scholar 

  • Ule J et al (2005) Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37(8):844–852

    Article  CAS  Google Scholar 

  • Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221):470–476

    Article  CAS  Google Scholar 

  • Weatheritt RJ, Sterne-Weiler T, Blencowe BJ (2016) The ribosome-engaged landscape of alternative splicing. Nat Struct Mol Biol 23(12):1117–1123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Tress .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ezkurdia, I., Valencia, A., Tress, M.L. (2019). Alternative Splicing. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_427-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_427-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics