Skip to main content

RNA Polymerases and Transcription

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Introduction

Multi-subunit RNA polymerases are among the largest and most dynamic enzymes known. RNA polymerases utilize general transcription factors to locate, bind to, and “melt” a promoter DNA sequence. General transcription factors help RNA polymerase to identify a promoter. RNA polymerase is considered a molecular motor, because, during elongation, the enzyme translocates along a DNA template to synthesize RNA. RNA polymerases interpret DNA genomic sequence by providing a messenger RNA (mRNA) copy of DNA for translation on a ribosome. The process of transcription is highly regulated and central to information processing in cells.

Because multi-subunit RNA polymerases are so central to genetic coding and code interpretation, an evolutionary view is applied to help understand RNA polymerase complexity, structure, function, and dynamics (Burton et al. 2016). RNA polymerase evolution tracks evolution of life on earth from the RNA-protein world to LUCA (the last universal common...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton ZF (2014) The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Transcription 5:e28674

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton SP, Burton ZF (2014) The sigma enigma: bacterial sigma factors, archaeal TFB and eukaryotic TFIIB are homologs. Transcription 5:e967599

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton ZF, Opron K, Wei G, Geiger JH (2016) A model for genesis of transcription systems. Transcription 7:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Zhang Y, Ebright RH (2016) Structural basis of transcription activation. Science 352:1330–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabaldon T, Pittis AA (2015) Origin and evolution of metabolic sub-cellular compartmentalization in eukaryotes. Biochimie 119:262–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E (2016) Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques T, Gilchrist DA, Nechaev S, Bern M, Muse GW, Burkholder A, Fargo DC, Adelman K (2013) Stable pausing by RNA polymerase II provides an opportunity to target and integrate regulatory signals. Mol Cell 52:517–528

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Aravind L (2012) Insights from the architecture of the bacterial transcription apparatus. J Struct Biol 179:299–319

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2003) Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kireeva ML, Kashlev M, Burton ZF (2013) RNA polymerase structure, function, regulation, dynamics, fidelity, and roles in gene expression. Chem Rev 113:8325–8330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV (2009) Intron-dominated genomes of early ancestors of eukaryotes. J Hered 100:618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechaev S, Adelman K (2011) Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809:34–45

    Article  CAS  PubMed  Google Scholar 

  • Pittis AA, Gabaldon T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531:101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Carmel L, Csuros M, Koonin EV (2012) Origin and evolution of spliceosomal introns. Biol Direct 7:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–168

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LH, Fromm G, Gokey NG, Henriques T, Muse GW, Burkholder A, Fargo DC, Hu G, Adelman K (2015) Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. Mol Cell 58:311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Stiller JW (2014) Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 111:5920–5925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kireeva, M.L., Kashlev, M., Burton, Z.F. (2018). RNA Polymerases and Transcription. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_443-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_443-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics