Skip to main content

Alternative Splicing Regulation: Structural and Biophysical Studies

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Definition

Alternative splicing (AS) is the process, by which multiple messenger RNAs are synthesized from a single gene and thereby can generate protein isoforms with distinct biological functions.

Alternative Splicing

Around 1980 it was discovered that protein variants of different size can be derived from the same gene. Later, it was shown that these alternative protein products result from differential inclusion of information from a given gene during pre-mRNA splicing. This process, called alternative splicing, entails that pre-mRNA transcripts containing multiple exons can be spliced into different mRNAs and thus encode different proteins with distinct functions. A major consequence of alternative splicing is that the number of proteins in metazoan organisms greatly exceeds the number of genes. Alternative splicing allows differential regulation of gene expression depending on tissue, developmental stage, gender, or external stimuli (Nilsen and Graveley 2010). From genome-wide...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    Article  CAS  Google Scholar 

  • Bonnal S, Martinez C, Forch P, Bachi A, Wilm M, Valcarcel J (2008) RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 32:81–95

    Article  CAS  Google Scholar 

  • Cavanagh JFW, Palmer IIIAG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice. Academic, London

    Google Scholar 

  • Corsini L, Bonnal S, Basquin J, Hothorn M, Scheffzek K, Valcarcel J, Sattler M (2007) U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat Struct Mol Biol 14:620–629

    Article  CAS  Google Scholar 

  • Gobl C, Madl T, Simon B, Sattler M (2014) NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog Nucl Magn Reson Spectrosc 80:26–63

    Article  CAS  Google Scholar 

  • Izquierdo JM, Majos N, Bonnal S, Martinez C, Castelo R, Guigo R, Bilbao D, Valcarcel J (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19:475–484

    Article  CAS  Google Scholar 

  • Leung AK, Nagai K, Li J (2011) Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473:536–539

    Article  CAS  Google Scholar 

  • Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  Google Scholar 

  • Mackereth CD, Sattler M (2012) Dynamics in multi-domain protein recognition of RNA. Curr Opin Struct Biol 22:287–296

    Article  CAS  Google Scholar 

  • Mackereth CD, Simon B, Sattler M (2005) Extending the size of protein-RNA complexes studied by nuclear magnetic resonance spectroscopy. Chembiochem 6:1578–1584

    Article  CAS  Google Scholar 

  • Mackereth CD, Madl T, Bonnal S, Simon B, Zanier K, Gasch A, Rybin V, Valcarcel J, Sattler M (2011) Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 475:408–411

    Article  CAS  Google Scholar 

  • Madl T, Gabel F, Sattler M (2011) NMR and small-angle scattering-based structural analysis of protein complexes in solution. J Struct Biol 173:472–482

    Article  CAS  Google Scholar 

  • Mourao A, Bonnal S, Soni K, Warner L, Bordonne R, Valcarcel J, Sattler M (2016) Structural basis for the recognition of spliceosomal SmN/B/B′ proteins by the RBM5 OCRE domain in splicing regulation. elife 5:e14707

    Google Scholar 

  • Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463

    Article  CAS  Google Scholar 

  • Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL et al (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309:2054–2057

    Article  CAS  Google Scholar 

  • Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18:1414–1420

    Article  CAS  Google Scholar 

  • Velazquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E (2004) Isothermal titration calorimetry. Curr Protoc Cell Biol, Chapter 17: Unit 17 18

    Google Scholar 

  • Voith von Voithenberg L, Sanchez-Rico C, Kang HS, Madl T, Zanier K, Barth A, Warner LR, Sattler M, Lamb DC (2016) Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc Natl Acad Sci USA 113:E7169–E7175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sattler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mourão, A., Sattler, M. (2019). Alternative Splicing Regulation: Structural and Biophysical Studies. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_446-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_446-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics