Skip to main content

Anti-Brownian Traps

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Synonyms

ABEL trap; Single-molecule methods

Introduction

Brownian motion is typically considered an inescapable attribute of small particles in free solution. This random jiggling often impedes or prohibits optical studies of the behavior of nanometer-sized objects, such as single biomolecules, because such objects quickly diffuse away from the observation region. The rate of diffusion increases with decreasing particle size, so the window of opportunity for measuring small particles is very short. Anti-Brownian traps address this challenge by partially suppressing Brownian motion: the position of a single particle is monitored, and active feedback is used to apply forces that directly counteract the observed displacements. This process confines the particle to a small region of interest (ROI), enabling extended study without surface attachment or encapsulation, both of which could perturb the particle’s behavior. A powerful single-molecule method, anti-Brownian traps have been used to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armani MD, Chaudhary SV, Probst R et al (2006) Using feedback control of microflows to independently steer multiple particles. J MEMS 15:945–956

    Article  Google Scholar 

  • Banterle N, Lemke EA (2016) Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol 39:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund AJ, Mabuchi H (2004) Feedback controller design for tracking a single fluorescent molecule. Appl Phys B Lasers Opt 78:653–659

    Article  CAS  Google Scholar 

  • Berglund AJ, Mabuchi H (2005) Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt Express 13:8069–8082

    Article  PubMed  Google Scholar 

  • Berglund AJ, McHale K, Mabuchi H (2007) Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit. Opt Lett 32:145–147

    Article  PubMed  Google Scholar 

  • Bockenhauer S, Moerner WE (2013) Photo-induced conformational flexibility in single solution-phase peridinin-chlorophyll-proteins. J Phys Chem A 117:8399–8406

    Article  CAS  PubMed  Google Scholar 

  • Bockenhauer S, Fuerstenberg A, Yao JY et al (2011) Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B 115:13328–13338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M, Cichos F (2013) Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7(12):11200–11208

    Article  CAS  PubMed  Google Scholar 

  • Cang H, Wong CM, Xu CS et al (2006) Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts. Appl Phys Lett 88:223901

    Article  Google Scholar 

  • Cang H, Xu CS, Montiel D et al (2007) Guiding a confocal microscope by single fluorescent nanoparticles. Opt Lett 32:2729–2731

    Article  PubMed  Google Scholar 

  • Cang H, Montiel D, Xu CS et al (2008) Observation of spectral anisotropy of gold nanoparticles. J Chem Phys 129:044503–1–044503–5

    Article  Google Scholar 

  • Cohen AE, Moerner WE (2005) Method for trapping and manipulating nanoscale objects in solution. Appl Phys Lett 86:093109

    Article  Google Scholar 

  • Cohen AE, Moerner WE (2007) Principal-components analysis of shape fluctuations of single DNA molecules. Proc Natl Acad Sci U S A 104(31):12622–12627. https://doi.org/10.1073/pnas.0610396104ER

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AE, Moerner WE (2008) Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. Opt Express 16:6941–6956

    Article  CAS  PubMed  Google Scholar 

  • Enderlein J (2000) Tracking of fluorescent molecules diffusing within membranes. Appl Phys B Lasers Opt 71:773–777

    Article  CAS  Google Scholar 

  • Fields AP, Cohen AE (2010) Anti-Brownian traps for studies on single molecules. Methods Enzymol 475:149–174. https://doi.org/10.1016/s0076-6879(10)75007-2

    Article  CAS  PubMed  Google Scholar 

  • Fields AP, Cohen AE (2011) Electrokinetic trapping at the one nanometer limit. Proc Natl Acad Sci U S A 108:8937–8942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields AP, Cohen AE (2012) Optimal tracking of a Brownian particle. Opt Express 20:22589–22601

    Article  Google Scholar 

  • Goldsmith RH, Moerner WE (2010) Watching conformational- and photodynamics of single fluorescent proteins in solution. Nat Chem 2(3):179–186. https://doi.org/10.1038/NCHEM.545ER

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith RH, Tabares LC, Kostrz D et al (2011) Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc Natl Acad Sci U S A 108:17269–17274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Douglas NR, Conley NR et al (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci U S A 108:16962–16967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun Y, Bechhoefer J (2012) Virtual potentials for feedback traps. Phys Rev E 86(6):061106

    Article  Google Scholar 

  • Jun Y, Gavrilov M, Bechhoefer J (2014) High-precision test of Landauer’s principle in a feedback trap. Phys Rev Lett 113:190601

    Article  PubMed  Google Scholar 

  • Kayci M, Chang H, Radenovic A (2014) Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap. Nano Lett 14(9):5335–5341

    Article  CAS  PubMed  Google Scholar 

  • King JK, Canfield BK, Davis LM (2013) Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution. Appl Phys Lett 103(4):043102. https://doi.org/10.1063/1.4816325.

    Article  Google Scholar 

  • Lessard GA, Goodwin PM, Werner JH (2007) Three-dimensional tracking of individual quantum dots. Appl Phys Lett 91(22):224106–224103

    Article  Google Scholar 

  • Levi V, Ruan QQ, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PJ, Sims PA, Oki H et al (2007) Target-locking acquisition with real-time confocal (TARC) microscopy. Opt Express 15(14):8702–8712

    Article  PubMed  Google Scholar 

  • Ropp C, Probst R, Cummins Z et al (2010) Manipulating quantum dots to nanometer precision by control of flow. Nano Lett 10(7):2525–2530

    Article  CAS  PubMed  Google Scholar 

  • Schlau-Cohen GS, Wang Q, Southall J et al (2013) Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. Proc Natl Acad Sci U S A 110:10899–10903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlau-Cohen GS, Bockenhauer S, Wang Q et al (2014) Single-molecule spectroscopy of photosynthetic proteins in solution: exploration of structure–function relationships. Chem Sci 5:2933–2939

    Article  CAS  Google Scholar 

  • Schlau-Cohen G, Yang H, Krueger TPJ et al (2015) Single-molecule identification of quenched and unquenched states of LHCII. J Phys Chem Lett 6(5):860–867. https://doi.org/10.1021/acs.jpclett.5b00034

    Article  CAS  PubMed  Google Scholar 

  • Squires AH, Moerner WE (2017) Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc Natl Acad Sci U S A 114(37):9779–9784. https://doi.org/10.1073/pnas.1705435114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanyeri M, Ranka M, Sittipolkul N et al (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2010) Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl Phys B Lasers Opt 99:23–30

    Article  CAS  Google Scholar 

  • Wang Q, Moerner WE (2012) Lifetime and spectrally resolved characterization of the photodynamics of single fluorophores in solution using the anti-Brownian electrokinetic trap. J Phys Chem B 117:4641–4648

    Article  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2014) Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat Methods 11:555–558

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Moerner WE (2015) Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc Natl Acad Sci U S A 112:13880–13885. https://doi.org/10.1073/pnas.1514027112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Goldsmith RH, Jiang Y et al (2012) Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 45:1955–1964. https://doi.org/10.1021/ar200304t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells NP, Lessard GA, Goodwin PM et al (2010) Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10(11):4732–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsher K, Yang H (2014) Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat Nanotechnol 9(3):198–203

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Moerner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Squires, A.H., Cohen, A.E., Moerner, W.E. (2018). Anti-Brownian Traps. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_486-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_486-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics