Skip to main content

Chemical Diversity of Lipids

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Lipids represent some of the most complex biological molecules, and their diversity is crucial for their cellular functions. The wide range of chemical and physical properties of different lipids determines a variety of roles for these compounds in biological processes. According to their structures, lipids can be divided into two main groups: the nonpolar lipids (acylglycerols, sterols, nonesterified (free) fatty acids, hydrocarbons, alcohols, wax, and steryl esters) and polar lipids (phosphoglycerides, glycosyl glycerides, and sphingolipids). Triacylglycerols act as energy stores and metabolic fuels. Polar lipids and sterols are important structural components of cell membranes where they may have many diverse functions. Arranged as bilayers, they establish permeability barriers for cells and organelles and provide a microenvironment for membrane-associated proteins as well as directly participating in metabolism and a multitude of membrane fusion events (Gurr et al. 2016). Waxes as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agassanian M, Mallampalli RK (2013) Surfactant phospholipid metabolism. Biochim Biophys Acta 1831:612–625

    Google Scholar 

  • Anderson R, Kates M, Volcani BE (1978) Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:89–106

    CAS  PubMed  Google Scholar 

  • Arnold C, Konkel A, Fischer R, Schunck W-H (2010) Cytochrome P450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacol Rep 62:536–547

    CAS  PubMed  Google Scholar 

  • Balas L, Durand T (2016) Dihydroxylated E,E,Z-docosatrienes. An overview of their synthesis and biological significance. Prog Lipid Res 61:1–18

    CAS  PubMed  Google Scholar 

  • Balas L, Feillet-Coudray C, Durand T (2018) Branched fatty acyl esters of hydroxyl fatty acids (FAHFAs) appealing beneficial fat against obesity and type-2 diabetes. Chem Eur J 38:9463–9476

    Google Scholar 

  • Barnathan G (2009) Non-methylene-interrupted fatty acids from marine invertebrates: occurrence, characterization and biological properties. Biochimie 91:671–678. https://doi.org/10.1016/j.biochi.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  • Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37:143–179

    CAS  PubMed  Google Scholar 

  • Batrakov SG, Panosyan AG, Konova IV, Bergelson LD (1974) Identification of threo-butane-2,3-diol phospholipid from Actinomyces olivaceus. Biochim Biophys Acta 337:29–40

    CAS  PubMed  Google Scholar 

  • Bisseret P, Ito S, Tremblay PA, Volcani BE, Dessort D, Kates M (1984) Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae. Biochim Biophys Acta 796:320–327

    CAS  PubMed  Google Scholar 

  • Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. BBA – Mol Basis Dis 1822:1442–1452

    CAS  Google Scholar 

  • Broad TE, Dawson RMC (1973) Formation of ceramide phosphorylethanolamine from phosphatidylethanolamine in the rumen protozoon Entodinium caudatum. Biochem J 134:659–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cahoon EB, Li-Beisson Y (2020) Plant unusual fatty acids: learning from the less common. Curr Opin Plant Biol 56:66–73

    Google Scholar 

  • Capdevila JH, Falck JR (2018) The arachidonic acid monooxygenase: from biochemical curiosity to physiological/pathophysiological significance. J Lipid Res 59:2047–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalfant CE, Spiegel S (2005) Sphingosine-1-phosphate and ceramide-1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    CAS  PubMed  Google Scholar 

  • Chapman KD (2004) Occurrence, metabolism and prospective functions of N-acetylethanolamines in plants. Prog Lipid Res 43:302–327

    CAS  PubMed  Google Scholar 

  • Christie WW, Han X (2010) Lipid analysis: isolation, separation, identification and Lipidomic analysis. Oily Press lipid library series, 4th edn. The Oily Press

    Google Scholar 

  • Christie WW, Harwood JL (2020) Oxidation of polyunsaturated fatty acids to produce lipid mediators. In: Harwood JL, Lloyd-Evans E (eds) Essays in Biochemistry, 64, lipid mediators. Portland Press, London, pp.401–421

    Google Scholar 

  • Costello CE, Beach DH, Singh BN (2001) Acidic glycerol lipids of Trichomonas vaginalis and Tritrichomonas foetus. Biol Chem 382:275–281

    CAS  PubMed  Google Scholar 

  • Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    CAS  PubMed  Google Scholar 

  • Cunnane SC (2003) Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res 42:544–568

    CAS  PubMed  Google Scholar 

  • Dali J (ed) (2017) The physiology and pharmacology of specialised pro-resolving mediators. Mol Aspects Med 58:1–130 (special journal issue)

    Google Scholar 

  • Dembitsky VM (1996) Betaine ether-linked glycerolipids: chemistry and biology. Prog Lipid Res 35:1–51

    CAS  PubMed  Google Scholar 

  • Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403–448

    CAS  PubMed  Google Scholar 

  • Dennis EA, Cao J, Hsu YH, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition and therapeutic interventions. Chem Rev 111:6130–6185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenberger W, Gribi C (1997) Lipids of Pavlova lutheri: cellular site and metabolic role of DGCC. Phytochemistry 45:1561–1567

    CAS  Google Scholar 

  • Futerman AH (2016) Sphingolipids. In: Ridgway ND, McLeod RS (eds) Biochemistry of lipids, lipoproteins and membranes, 6th edn. Elsevier, Amsterdam, pp 297–326

    Google Scholar 

  • Goren MB (1970) Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. Biochim Biophys Acta 210:127–138

    CAS  PubMed  Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AF (eds) (2007) The lipid handbook, 3rd edn. Taylor and Francis, Boca Raton

    Google Scholar 

  • Gurr MI, Harwood JL, Frayn KN, Murphy DJ, Michell RH (2016) Lipids: biochemistry, biotechnology and health, 6th edn. Blackwell/Wiley, Oxford

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    CAS  PubMed  Google Scholar 

  • Hamilton RJ (ed) (1995) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee

    Google Scholar 

  • Hannun YA, Obeid LM (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19:175–191

    CAS  PubMed  Google Scholar 

  • Heinz E (1996) Plant glycolipids: structure, isolation and analysis. In: Christie WW (ed) Advances in lipid methodology – three. The Oily Press, Dundee, pp 211–332

    Google Scholar 

  • Holzl G, Dormann P (2007) Structure and function of glyceroglycolipids in plants and bacteria. Prog Lipid Res 46:225–243

    PubMed  Google Scholar 

  • Hori T, Nozawa Y (1982) Phospholipids. In: Hawthorne JN, Ansell GB (eds) Phospholipids. Elsevier Biomedical Press, Amsterdam, pp 95–128

    Google Scholar 

  • Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36:245–319

    CAS  PubMed  Google Scholar 

  • Kates M (1990) Glyco-, phosphoglyco- and sulfoglycoglycerolipids from Bacteria. In: Kates M (ed) Handbook of lipid research. Glycolipids, phosphoglycolipids and sulfoglycolipids, vol 6. Plenum Press, New York, pp 1–122

    Google Scholar 

  • Kaya K (1992) Chemistry and biochemistry of taurolipids. Prog Lipid Res 31:87–108

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Endo K, Wada H (2017) Specific distribution of phosphatidylglycerol to photosystem complexes in the thylakoid membranes. Front Plant Sci 8:1991

    PubMed  PubMed Central  Google Scholar 

  • Koivuniemi A (2017) The biophysical properties of plasmalogens originating from their unique molecular architecture. FEBS Lett 591:2700–2713

    CAS  PubMed  Google Scholar 

  • Kolar MJ, Konduri S, Chang T, Wang H, McNerlin C, Ohlsson L et al (2019) Linoleic acid esters of hydroxyl linoleic acids are anti-inflammatory lipids found in plants and mammals. J Biol Chem. https://doi.org/10.1074/jbc.RA118.006956

  • Kolter T (2004) Glycosphingolipids. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. The Oily Press, Bridgwater, pp 169–196

    Google Scholar 

  • Li X, Teitgen AM, Shirani A, Ling J, Busta L, Cahoon RE, Zhang W, Li Z, Chapman KD, Berman D, Zhang C, Minto RE, Cahoon EB (2018) Discontinuous fatty acid elongation yields hydroxylated seed oil with improved function. Nat Plants 4:711–720. https://doi.org/10.1038/s41477-018-0225-7

    Article  CAS  PubMed  Google Scholar 

  • Lie Ken Jie MSF, Pasha MK (1998) Fatty acids, fatty acid analogues and their derivatives. Nat Prod Rep 15:607–629

    CAS  Google Scholar 

  • Maeba R, Maeba T, Kinoshita M, Takao K, Takenaka H, Kusano J, Yoshimura N, Takeoka Y, Yasuda D, Okazaki T et al (2007) Plasmalogens in human serum positively correlate with high-density lipoprotein and decrease with aging. J Atheroscler Thromb 14:12–18

    CAS  PubMed  Google Scholar 

  • Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB (2013) Plant sphingolipids: function follows form. Curr Opin Plant Biol 16:350–357

    CAS  PubMed  Google Scholar 

  • Merrill AH, Sandhoff K (2002) Sphingolipids: metabolism and cell signalling. In: Vance DE, Vance J (eds) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier, Amsterdam, pp 373–407

    Google Scholar 

  • Moreau RA, Young DH, Danis PO, Powell MJ, Quinn CJ, Beshah K, Slawecki RA, Dilliplane RL (1998) Identification ceramide-phosphorylethanolamine in oomycete plant pathogens: Pythium ultimum, Phytophthora infestans, and Phytophthora capsici. Lipids 33:307–317

    CAS  PubMed  Google Scholar 

  • Moschidis MC (1985) Phosphonolipids. Prog Lipid Res 23:223–246

    Google Scholar 

  • Mukhamedova KS, Glushenkova AI (2000) Natural phosphonolipids. Chem Nat Compounds 36:329–341

    CAS  Google Scholar 

  • Murray RK, Narasimhan R (1990) Glycerolipids in animal tissues. In: Kates M (ed) Handbook of lipid research. Glycolipids, phosphoglycolipids and sulfoglycolipids, vol 6. Plenum Press, New York, pp 321–361

    Google Scholar 

  • Naka T, Fujiwara N, Yana I, Maeda S, Doe M, Minamino M, Ikeda N, Kato Y, Watabe K, Kumazawa Y, Tomiyasu I, Kobayashi K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta 1635:83–92

    CAS  PubMed  Google Scholar 

  • Nicolaides F, Fu HC, Ansari MNA (1970) Diester waxes in surface lipids of animal skin. Lipids 5:299–307

    CAS  PubMed  Google Scholar 

  • Olsen E, Jantzen E (2001) Sphingolipids in bacterial and fungi. Anaerobe 7:103–112

    CAS  Google Scholar 

  • Paul S, Lancaster GI, Meikle PJ (2019) Plasmalogens: a potential therapeutic targer for neurodegenerative and cardiometabolic disease. Prog Lipid Res 74:186–195

    CAS  PubMed  Google Scholar 

  • Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet activating factor and related lipid mediators. Annu Rev Biochem 69:419–445

    CAS  PubMed  Google Scholar 

  • Pyne S (2004) Lysolipids: sphingosine-1-phosphate and lysophosphatidic acid. In: Nicolaou A, Kokotos G (eds) Bioactive lipids. The Oily Press, Bridgewater, pp 85–106

    Google Scholar 

  • Raab A, Newcombe C, Pitton D, Ebel R, Feldmann J (2013) Comprehensive analysis of lipophilic arsenic species in a brown alga (Saccharina latissima). Anal Chem 85:2817–2824

    CAS  PubMed  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) An overview of microbial lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 3–22

    Google Scholar 

  • Ren M, Phoon CKL, Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55:1–16

    CAS  PubMed  Google Scholar 

  • Řezanka T, Nedbalová L, BarcytÄ— D, Vítová M, Sigler K (2019) Arsenolipids in the green alga Coccomyxa (Trebouxiophyceae, Chlorophyta). Phytochemistry 164:243–251

    PubMed  Google Scholar 

  • Ridgeway ND, McLeod RS (eds) (2016) Biochemistry of lipids, lipoproteins and membranes, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Samuelsson B (2012) Role of basic science in the development of new medicines: examples from the eicosanoid field. J Biol Chem 287:10070–10080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnaar RL, Lopez PHH (eds) (2018) Gangliosides in health and disease. Prog Mol Biol Transl Sci 156:1–462

    Google Scholar 

  • Sebedio JL, Grandgirard A (1989) Cyclic fatty acids: natural sources, formation during heat treatment, synthesis and biological properties. Prog Lipid Res 28:303–336

    CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organisation and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    PubMed  PubMed Central  Google Scholar 

  • Spector A, Kim H-Y (2015) Discovery of essential fatty acids. J Lipid Res 56:11–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632:1–15

    CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    CAS  PubMed  Google Scholar 

  • Suzuki T, Hasegawa K (1974) Diol lipids in the phospholipid fraction of Lipomyces starkeyi grown in the medium containing 1,2-propanediol. Agric Biol Chem 38:613–620

    CAS  Google Scholar 

  • Synder F (1996) Ether-linked lipids and their bioactive species: occurrence, chemistry, metabolism, regulation and function. In: Vance DE, Vance JE (eds) Biochemistry of lipids and lipoproteins and membranes. Elsevier, Amsterdam, pp 183–121

    Google Scholar 

  • Tang S, Wan M, Huang W, Stanton RC, Xu Y (2018) Maresins: specialised proresolving lipid mediators and their potential role in inflammatory-related diseases. Mediators Inflamm 2018:Article 2380319

    PubMed  Google Scholar 

  • Tanphaichitr N, Kongmanas K, Faull KF, Whitelegge J, Compostella F, Goto-Inoue N, Linton J-J, Doyle B, Oko R, Xu H, Panza L, Saewu A (2018) Properties, metabolism and roles of sulfogalactosylglycerolipid in male reproduction. Prog Lipid Res 72:18–41. https://doi.org/10.1016/j.plipres.2018.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremolieres A, Siegenthaler P-A (1998) Role of acyl lipids in the function of photosynthetic membranes in higher plants. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer, Dordrecht, pp 145–173

    Google Scholar 

  • Viczek SA, Jensen KB, Francesconi KA (2016) Arsenic-containing phosphatidylcholines: a new group of arsenolipids discovered in herring caviar. Angew Chem-Int Ed 55:5259–5262

    CAS  Google Scholar 

  • Wasternack C, Feussner I (2018) The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol 69:363–386

    CAS  PubMed  Google Scholar 

  • Zeyda M, Stulnig TM (2006) Lipid Rafts & Co.: an integrated model of membrane organization in T cell activation. Prog Lipid Res 45:187–202

    CAS  PubMed  Google Scholar 

  • Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758:1864–1884

    CAS  PubMed  Google Scholar 

  • Zhou Z, Menna M, Cai YS, Guo YW (2015) Polyacetylenes of marine origin: chemistry and bioactivity. Chem Rev 115:1543–1596

    CAS  PubMed  Google Scholar 

  • Zhukova NV (2019) Fatty acids of marine mollusks: impact of diet, bacterial symbiosis and biosynthetic potential. Biomolecules 9(12):pii: E857. https://doi.org/10.3390/biom9120857

    Article  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina A. Guschina .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guschina, I.A., Harwood, J.L. (2020). Chemical Diversity of Lipids. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_526-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_526-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics