Skip to main content

Calcium Phosphate Bioceramics in Biomaterials Development and Applications

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 94 Accesses

Introduction

Although bone tissue possesses the capacity for regenerative growth, the bone repair process is impaired in many clinical and pathological situations. Large bone loss caused by trauma and tumor resection and/or aging require reconstructive surgery and/or bone regeneration. At present, bone surgeons have three different possibilities when it comes to replacing bone.

Autologous bone grafts are considered as the gold standard for bone replacement, thanks to the fact that living cells are able to promote bone regeneration, in spite of large pain, septic complications, and limited amount harvested from the iliac crest or other sites. Allogenic bone graftsharvested from a cadaver or during a surgery (e.g., total hip arthroplasty) and processed by tissue banks are dead bone and have limitations because of the possible transmission of nonconventional agents or viruses, and the risk of immunological incompatibility. Xenogenic bone grafts, mainly from bovine, but also equine or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BCP:

Biphasic calcium phosphate

CaP:

Calcium phosphate

CDA:

Calcium-deficient apatite

CHA:

Carbonated hydroxyapatite

HA:

Hydroxyapatite

IBS:

Injectable bone substitute

MBCP:

Micro-macroporous biphasic calcium phosphate

TCP:

Tricalcium phosphate

References

  • Afnor (2015) ISO 62366-1, Part 1: application of usability engineering to medical devices

    Google Scholar 

  • Albee FH, Morrison HF (1920) Studies in bone growth. Ann Surg 71(1):32–39. https://doi.org/10.1097/00000658-192001000-00006

    Article  PubMed Central  Google Scholar 

  • Basu B, Nath S (2009) Fundamentals of biomaterials and biocompatibility. In: Basu B, Katti DS, Kumar A (eds) Advanced biomaterials: fundamentals, processing, and applications, 1st edn. Wiley, Hoboken, pp 3–18

    Chapter  Google Scholar 

  • Bohner M (2008) Bioresorbable ceramics. In: Buchannan F (ed) Degradation rate of bioresorbale materials, prediction and evaluation, 1st edn. Woodhead Publishing, Cambridge, pp 95–114

    Chapter  Google Scholar 

  • Bohner M (2010) Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 20:1–12

    Article  CAS  Google Scholar 

  • Bohner M, Miron RJ (2019) A proposed mechanism for material-induced heterotopic ossification. Mater Today 22:132–141. https://doi.org/10.1016/j.mattod.2018.10.036

    Article  CAS  Google Scholar 

  • Bouler J-M et al (2017) Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater 53:1–12

    Article  CAS  Google Scholar 

  • Cho D et al (2005) Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. 63. https://doi.org/10.1016/j.surneu.2004.10.016

  • d’Arros C et al (2020) Bioactivity of biphasic calcium phopshate granules, the control of a needle-like apatite layer formation for further medical device developments. Front Bioeng Biotechnol 7. https://doi.org/10.3389/fbioe.2019.00462

  • Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19(16):1473–1478. https://doi.org/10.1016/S0142-9612(98)00061-1

    Article  CAS  PubMed  Google Scholar 

  • Daculsi G (2015) Smart scaffolds: the future of bioceramic. J Mater Sci Mater Med 26(4):154

    Article  Google Scholar 

  • Daculsi G, d’Arros C (2020) From biphasic calcium phosphate bioceramic technology to biomaterial-assisted cell therapy and regenerative medicine. In: Ishikawa K, El-Ghannam AR (eds) Bioceramics and their clinical applications, 2nd edn. in press Elsevier

    Google Scholar 

  • Daculsi G, Dard M (1994) Bone calcium phosphate ceramic interface. Osteo Int 2:153–156

    Google Scholar 

  • Daculsi G, LeGeros RZ (2008) Tricalcium phosphate/hydroxyapatite biphasic ceramics. In: Kokubo T (ed) Bioceramics and their clinical applications, 1st edn. Woodhead Publishing, Cambridge, pp 395–423. https://doi.org/10.1533/9781845694227.2.395

    Chapter  Google Scholar 

  • Daculsi G et al (1990) Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46(1):20–27

    Article  CAS  Google Scholar 

  • Daculsi G et al (2006) Performance for bone ingrowth of biphasic calcium phosphate ceramic versus bovine bone substitute. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/kem.309-311.1379

  • Daculsi G et al (2010) Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci Mater Med 21(3):855–861. https://doi.org/10.1007/s10856-009-3914-y

    Article  CAS  PubMed  Google Scholar 

  • Davison NL et al (2015) Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. Eur Cells Mater 29. https://doi.org/10.22203/eCM.v029a24

  • De Groot K (1983) Ceramics of calcium phosphate : preparation and properties. In: De Groot K (ed) Bioceramics of calcium phosphates, 1st edn. CRC Press, Boca Raton, pp 100–114

    Google Scholar 

  • De Santis R, Guarino V, Ambrosio L (2009) Composite biomaterials for bone repair. In: Planell JA et al (eds) Bone repair biomaterials, 1st edn. Woodhead Publishing, Cambridge, pp 252–270

    Chapter  Google Scholar 

  • Dorozhkin (2010) Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 22–107. https://doi.org/10.3390/jfb1010022

  • Dorozhkin (2011) Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties. Int J Mater Chem 1(1):1–48

    Google Scholar 

  • Dorozhkin (2013) A detailed history of calcium orthophosphates from 1770s till 1950. Mater Sci Eng C 33(6):3085–3110. https://doi.org/10.1016/j.msec.2013.04.002

    Article  CAS  Google Scholar 

  • Duan et al (2018) Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomater Sci 6(1):136–145. https://doi.org/10.1039/c7bm00717e

    Article  CAS  Google Scholar 

  • Duan et al (2019) Accelerated bone formation by biphasic calcium phosphate with a novel sub-micron surface topography. Eur Cell Mater 37:60–73. https://doi.org/10.22203/eCM.v037a05

    Article  CAS  PubMed  Google Scholar 

  • Ducheyne P, Marcolongo M, Schepers E (1993) Bioceramic composites. In: Hench LL, Wilson J (eds) Advanced series in ceramics – an introduction to bioceramics, 1st edn. World Scientific, Singapore, pp 281–298

    Chapter  Google Scholar 

  • Fillingham Y, Jacobs J (2016) Bone grafts and their substitutes. Bone Joint J 98B(1):6–9. https://doi.org/10.1302/0301620X.98B.36350

    Article  Google Scholar 

  • Gauthier O et al (1999) Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. J Mater Sci Mater Med 10(4):199–204. https://doi.org/10.1023/A:1008949910440

    Article  CAS  PubMed  Google Scholar 

  • Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury. https://doi.org/10.1016/j.injury.2005.07.029

  • Ginebra MP (2009) Cements as bone repair materials. In: Planell JA et al (eds) Bone repair biomaterials, 1st edn. Woodhead Publishing, Cambridge, pp 271–308

    Chapter  Google Scholar 

  • Habibovic P et al (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. 29:944–953. https://doi.org/10.1016/j.biomaterials.2007.10.023

  • Habraken W et al (2016) Calcium phosphates in biomedical applications: materials for the future? Mater Today 19(2):69–87. https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  CAS  Google Scholar 

  • Le Nihouannen D et al (2008) Bone tissue formation in sheep muscles induced by a biphasic calcium phosphate ceramic and fibrin glue composite. J Mater Sci Mater Med 19(2):667–675. https://doi.org/10.1007/s10856-007-3206-3

    Article  CAS  PubMed  Google Scholar 

  • LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. In: Legeros RZ (ed) Monograph in oral science. Karger, Basel

    Google Scholar 

  • Legeros RZ, Daculsi G (1990) The in vivo behaviour of biphasic calcium phosphate. Histological, ultrastructural and physico chemical characterization. In: Yamamuro T, Hench LL, Wilson J (eds) Handbook of bioactive ceramics, calcium phosphate and hydroxylapatite ceramics, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Legeros RZ et al (2009) Fundamentals of hydroxyapatite and related calcium phosphate. In: Basu B, Katti DS, Kumar A (eds) Advanced biomaterials: fundamentals, processing, and applications, 1st edn. Wiley, Hoboken, pp 19–52

    Google Scholar 

  • Nath S, Basu B (2009) Materials for orthopedic applications. In: Basu B, Katti DS, Kumar A (eds) Advanced biomaterials: fundamentals, processing, and applications, 1st edn. Wiley, Hoboken, pp 53–100

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Commission for financial support with program REBORNE and H2020 OrthoUnion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Daculsi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

d’Arros, C., Borget, P., Miramond, T., Daculsi, G. (2020). Calcium Phosphate Bioceramics in Biomaterials Development and Applications. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_698-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_698-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics