Skip to main content

Fundamental Properties and Structure of Myosin

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics
  • 14 Accesses

Synonyms

Structural basis of myosin motility; Structural features common to all myosin classes

Definition

Myosins are a superfamily of molecular motors that convert the chemical energy of ATP hydrolysis into directed motion along the filamentous protein actin.

Introduction

Within the myosin superfamily, there are numerous classes that are responsible for a wide range of cellular processes requiring generation of force and motion, including organelle trafficking, cellular motion, cytokinesis, and muscle contraction (reviewed in (Foth et al. 2006)). The goal of this review is to discuss the common myosin structural features that allow these motors to convert the chemical energy associated with ATP hydrolysis into force and motion.

Myosin Nomenclature

A detailed description of myosin nomenclature can be found in Myosin family classification; a brief overview is presented here. The term myosin was originally used to describe the protein responsible for force generation in the thick...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anson M, Geeves MA, Kurzawa SE, Manstein D (1996) Myosin motors with artificial lever arms. EMBO J 22:6069–6074

    Article  Google Scholar 

  • Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275(49):38494–38499

    Article  CAS  PubMed  Google Scholar 

  • Cheney RE, Mooseker MS (1992) Unconventional Myosins. Curr Opin Cell Biol 4(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Cooke R (1986) The mechanism of muscle contraction. CRC Crit Rev Biochem 21(1):53–118

    Article  CAS  PubMed  Google Scholar 

  • Cooke R (2004) The sliding filament model: 1972–2004. J Gen Physiol 123(6):643–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cope MJ, Whisstock J, Rayment I, Kendrick-Jones J (1996) Conservation within the myosin motor domain: implications for structure and function. Structure 4(8):969–987

    Article  CAS  PubMed  Google Scholar 

  • Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23(23):4527–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Moos C (1968) The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry 7(4):1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Moos C (1970) Actin activation of heavy meromyosin adenosine triphosphatase. Dependence on adenosine triphosphate and actin concentrations. J Biol Chem 245(9):2451–2456

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Zobel CR, Moos C (1968) Subfragment 1 of myosin: adenosine trihosphatase activation by actin. Biochemistry 7(9):3186–3194

    Article  CAS  PubMed  Google Scholar 

  • Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.DeFx and MgADP.AlF−4. Biochemistry 34:8960–8972

    Article  CAS  PubMed  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103:3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K (2006) Fucntional characterization of the N-terminal region of myosin-2. J Biol Chem 281:36102–36109

    Article  CAS  PubMed  Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  CAS  PubMed  Google Scholar 

  • Houdusse A, Sweeney HL (2016) How myosin generates force on actin filaments. Trends Biochem Sci 41(12):989–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houdusse A, Szent-Györgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3(5):631–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164(3886):1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  CAS  PubMed  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–973

    Article  CAS  PubMed  Google Scholar 

  • Kollmar M, Durrwang U, Kliche W, Manstein DJ, Kull FJ (2002) Crystal structure of the motor domain of a class-I myosin. EMBO J 21:2517–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühne W (1864) Untersuchungen über das Protoplasma und die Contractilitat. W Engelmann, Leipzig

    Book  Google Scholar 

  • Llinas P, Pylypenko O, Isabet T, Mukherjea M, Sweeney HL, Houdusse A (2012) How myosin motors power cellular function. FEBS J 279:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A (2015) How actin initiates the motor activity of myosin. Dev Cell 33(4):401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins. J Mol Biol 371(4):902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617

    Article  CAS  PubMed  Google Scholar 

  • Ménétrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435(7043):779–785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muretta JM, Petersen KJ, Thomas DD (2013) Direct real-time detection of the actin-activated power stroke within the myosin catalytic domain. Proc Natl Acad Sci 10(18):7211–7216

    Article  Google Scholar 

  • Muretta JM, Rohde JA, Johnsrud DO, Cornea S, Thomas DD (2015) Direct real-time detection of the structural and biochemical events in the myosin power stroke. Proc Natl Acad Sci 112(46):14272–14277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaeva OP, Orlov VN, Bobkov AA, Levitsky DI (2002) Differential scanning calorimetric study of myosin subfragment 1 with tryptic cleavage at the N-terminal region of the heavy chain. Eur J Biochem 269(22):5678–5688

    Article  CAS  PubMed  Google Scholar 

  • Ordonitz F, Kollmar M (2007) Drawing the tree of life of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8(9):R196

    Article  CAS  Google Scholar 

  • Pollard TD, Korn ED (1973) Acanthamoeba myosin. I Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248(13):4682–4690

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261(5117):50–58

    Article  CAS  PubMed  Google Scholar 

  • Risal D, Gourinath S, Himmel DM, Szent-Gyorgyi AG, Cohen C (2004) Proc Natl Acad Sci USA 101:8930–8935

    Google Scholar 

  • Sellers JR, Veigel C (2010) Direct observation of the myosin-Va power stroke and its reversal. Nat Struct Mol Biol 17(5):590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Rayment I (1996) X-ray structure of the magnesium(II).ADP.vanadate complex of the Dcityostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 35(17):5404–5417

    Article  CAS  PubMed  Google Scholar 

  • Spudich JA, Sivaramakrishnan S (2010) Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol 11(2):128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Goldman YE (2011) Lever arm mechanics of processive motors. Biophys J 101:1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Szent-Györgyi A (2004) The early history of the biochemistry of muscle contraction. J Gen Physiol 123(6):631–641

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90(4):1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Trivedi DV, Muretta JM, Swenson AM, Davis JP, Thomas DD, Yengo CM (2015) Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V. Proc Natl Acad Sci 112(47):14593–14598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyeda T, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci 93(9):4459–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Duffelen M, Lynn CR, Berger CL (2005) Kinetics of structural changes in the relay loop and SH3 domain of myosin. Biochem Biophys Res Commun 329(2):563–572

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O’Neall-Hennessey E, Reshetnikova L, Szent-Györgyi AG, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15(5):553–564

    Article  CAS  PubMed  Google Scholar 

  • Yount RG, Lawson D, Rayment I (1995) Is myosin a “back door” enzyme? Biophys J 68(4 Suppl):44S

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Altman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Altman, D. (2021). Fundamental Properties and Structure of Myosin. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_753-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_753-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics