Skip to main content

Sensory Rhodopsin II: Signal Development and Transduction

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Synonyms

Phoborhodopsin

Definition

Sensory rhodopsin II belongs to the microbial rhodopsins, which constitute a family of seven-helix membrane proteins with the chromophore retinal. Members of this family are distributed throughout the Bacteria, Archaea, and Eukaryota. These photoactive proteins use a common structural design for three distinct functions: light-driven ion transport, ion channels, and sensors. The sensors start a signal transduction chain similar to that of the two-component system of eubacterial chemotaxis. The connecting membrane part between the photoreceptor and the following cytoplasmic signal cascade is formed by a transducer molecule that binds tightly and specifically to its cognate receptor by means of two transmembrane helices (TM1 and TM2) (Gordeliy et al. 2002).

Basic Characteristics

The discovery of purple membrane from Halobacterium salinarum and its constituent bacteriorhodopsin (bR) more than 40 years ago (Oesterhelt and Stoeckenius 1971) caused an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79:6250–6254. https://www.ncbi.nlm.nih.gov/pubmed/6959114

    Article  CAS  Google Scholar 

  • Doebber M, Bordignon E, Klare JP, Holterhues J, Martell S, Mennes N, Li L, Engelhard M, Steinhoff HJ (2008) Salt-driven equilibrium between two conformations in the HAMP domain from Natronomonas pharaonis: the language of signal transfer? J Biol Chem 283:28691–28701

    Article  CAS  Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M (2002) Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487

    Article  CAS  Google Scholar 

  • Grote M, Engelhard M, Hegemann P (2013) Of ion pumps, sensors and channels – perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545. https://www.ncbi.nlm.nih.gov/pubmed/23994288

    Article  Google Scholar 

  • Gushchin I, Gordeliy V, Grudinin S (2013) Two distinct states of the HAMP domain from sensory rhodopsin transducer observed in unbiased molecular dynamics simulations. PLoS. One 8(7):e66917

    Article  CAS  Google Scholar 

  • Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin G, Engelhard M, Büldt G, Gordeliy V (2011a) Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. J Mol Biol 412:591–600

    Article  CAS  Google Scholar 

  • Gushchin IY, Gordeliy VI, Grudinin S (2011b) Role of the HAMP domain region of sensory rhodopsin transducers in signal transduction. Biochemistry 50:574–580

    Article  CAS  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  Google Scholar 

  • Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929–940

    Article  CAS  Google Scholar 

  • Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T et al (2017) New insights on signal propagation by sensory rhodopsin II/transducer complex. Sci Rep 7:41811. https://www.ncbi.nlm.nih.gov/pubmed/28165484

    Article  CAS  Google Scholar 

  • Klare JP, Chizhov I, Engelhard M (2007) Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. In: Schäfer G, Penefsky HS (eds) Bioenergetics: energy conservation and conversion. Springer, Berlin, pp 73–122. http://www.ncbi.nlm.nih.gov/pubmed/17898961

    Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    Article  CAS  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119

    Article  CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152. https://www.ncbi.nlm.nih.gov/pubmed/4940442

    Article  CAS  Google Scholar 

  • Orekhov P, Bothe A, Steinhoff H-J, Shaitan KV, Raunser S, Fotiadis D, Schlesinger R, Klare JP, Engelhard M (2017) Sensory rhodopsin I and sensory rhodopsin II form trimers of dimers in complex with their cognate transducers. Photochem Photobiol 93:796–804. https://doi.org/10.1111/php.12763

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL (2006) The multitalented microbial sensory rhodopsins. Trends Microbiol 14:480–487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Büldt .

Editor information

Editors and Affiliations

Section Editor information

Electronic Supplementary Material

Movie of the structure of the complex SRII/HtrII in red/green. Darker parts of the complex protrude out of the membrane surface; lighter parts are within the membrane. The retinal is in purple color (MP4 5099 kb)

Movie of part of the complex: Transition between “U” and “V” states of the complex, also indicating the changes of the membrane. The “V”-shaped structure may correspond to the active state of the complex, and transition from the “U” to the “V” shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII (MP4 4082 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Büldt, G., Gordeliy, V., Klare, J.P., Engelhard, M. (2019). Sensory Rhodopsin II: Signal Development and Transduction. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_803-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_803-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics