Skip to main content

Genetics of Pediatric Tumors

  • Living reference work entry
  • First Online:
Book cover Pediatric Surgery

Abstract

Cancer is a disease that arises from the accumulation of multiple genetic aberrations within the genome. In the case of pediatric cancer, these alterations often result in a less differentiated or more pluripotent state. The extracranial solid tumor neuroblastoma is one of the most heterogeneous pediatric neoplasms. Several genetic alterations such as MYCN amplification, DNA ploidy, and allelic loss of chromosomes 1p and 11q serve as powerful prognostic factors for the stratification of different subtypes of neuroblastoma. Recently, advances in high-throughput screening methods have revealed an additional source of powerful genetic indicators for disease stratification, the non-coding RNA genome. The most widely studied non-coding RNAs to date are miRNAs, and this chapter provides an insight into the clinical application of miRNA profiling and their future potential as a novel means of targeted therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barembaum M, Bronner-Fraser M. Early steps in neural crest specification. Semin Cell Dev Biol. 2005;16:642–6.

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernards R. N-myc disrupts protein kinase C-mediated signal transduction in neuroblastoma. EMBO J. 1991;10:1119–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bown N, Cotterill S, Lastowska M, O’Neill S, Pearson AD, Plantaz D, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med. 1999;340:1954–61.

    Article  PubMed  CAS  Google Scholar 

  • Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM, et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One. 2009;4:e7850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303:56–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.

    Article  PubMed  CAS  Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–4.

    Article  PubMed  CAS  Google Scholar 

  • Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A, et al. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res. 2010;16:2971–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castleberry RP, Pritchard J, Ambros P, Berthold F, Brodeur GM, Castel V, et al. The International Neuroblastoma Risk Groups (INRG): a preliminary report. Eur J Cancer. 1997;33:2113–6.

    Article  PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  PubMed  CAS  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–72.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Creevey L, Ryan J, Harvey H, Bray IM, Meehan M, Khan AR, et al. MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Mol Cancer. 2013;12:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.

    Article  PubMed  CAS  Google Scholar 

  • Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  PubMed  CAS  Google Scholar 

  • Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer. 2010;9:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011;18:1089–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gammill LS, Bronner-Fraser M. Neural crest specification: migrating into genomics. Nat Rev Neurosci. 2003;4:795–805.

    Article  PubMed  CAS  Google Scholar 

  • Giannini G, Cerignoli F, Mellone M, Massimi I, Ambrosi C, Rinaldi C, et al. High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res. 2005;65:8308–16.

    Article  PubMed  CAS  Google Scholar 

  • Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18:4948–57.

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hecht M, Schulte JH, Eggert A, Wilting J, Schweigerer L. The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis. 2005;26:2105–15.

    Article  PubMed  CAS  Google Scholar 

  • Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 2002;62:6462–6.

    PubMed  CAS  Google Scholar 

  • Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1:e116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber K, Combs S, Ernsberger U, Kalcheim C, Unsicker K. Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: beyond the glucocorticoid hypothesis. Ann N Y Acad Sci. 2002;971:554–9.

    Article  PubMed  CAS  Google Scholar 

  • Iavarone A, Lasorella A. Id proteins in neural cancer. Cancer Lett. 2004;204:189–96.

    Article  PubMed  CAS  Google Scholar 

  • Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.

    Article  PubMed  CAS  Google Scholar 

  • Katzenstein HM, Bowman LC, Brodeur GM, Thorner PS, Joshi VV, Smith EI, et al. Prognostic significance of age, MYCN oncogene amplification, tumor cell ploidy, and histology in 110 infants with stage D(S) neuroblastoma: the pediatric oncology group experience – a pediatric oncology group study. J Clin Oncol. 1998;16:2007–17.

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Wong CW, Goldsmith JD, Song C, Fu W, Allion MB, et al. Rapid apoptosis in the pulmonary vasculature distinguishes non-metastatic from metastatic melanoma cells. Cancer Lett. 2004;213:203–12.

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM, et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis. 2012;33:976–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch J, Meehan MH, Crean J, Copeland J, Stallings RL, Bray IM. Metastasis Suppressor microRNA-335 Targets the Formin Family of Actin Nucleators. PLoS One. 2013;8:e78428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  PubMed  CAS  Google Scholar 

  • Manohar CF, Bray JA, Salwen HR, Madafiglio J, Cheng A, Flemming C, et al. MYCN-mediated regulation of the MRP1 promoter in human neuroblastoma. Oncogene. 2004;23:753–62.

    Article  PubMed  CAS  Google Scholar 

  • McArdle L, McDermott M, Purcell R, Grehan D, O’Meara A, Breatnach F, et al. Oligonucleotide microarray analysis of gene expression in neuroblastoma displaying loss of chromosome 11q. Carcinogenesis. 2004;25:1599–609.

    Article  PubMed  CAS  Google Scholar 

  • Morowitz M, Shusterman S, Mosse Y, Hii G, Winter CL, Khazi D, et al. Detection of single-copy chromosome 17q gain in human neuroblastomas using real-time quantitative polymerase chain reaction. Mod Pathol. 2003;16:1248–56.

    Article  PubMed  Google Scholar 

  • Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy DM, Buckley PG, Bryan K, Watters KM, Koster J, van Sluis P, et al. Dissection of the oncogenic MYCN transcriptional network reveals a large set of clinically relevant cell cycle genes as drivers of neuroblastoma tumorigenesis. Mol Carcinog. 2011a;50:403–11.

    Article  PubMed  CAS  Google Scholar 

  • Murphy DM, Buckley PG, Das S, Watters KM, Bryan K, Stallings RL. Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma. PLoS One. 2011b;6:e21436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001;169:107–14.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Ozaki T, Koseki H, Nakagawara A, Sakiyama S. Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochem Biophys Res Commun. 2003;307:206–13.

    Article  PubMed  CAS  Google Scholar 

  • Nowacki S, Skowron M, Oberthuer A, Fagin A, Voth H, Brors B, et al. Expression of the tumour suppressor gene CADM1 is associated with favourable outcome and inhibits cell survival in neuroblastoma. Oncogene. 2008;27:3329–38.

    Article  PubMed  CAS  Google Scholar 

  • Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.

    Article  PubMed  CAS  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome. Br J Cancer. 2012;107:967–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010;38:5919–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang X, Burlingame SM, Okcu MF, Ge N, Russell HV, Egler RA, et al. Aurora A is a negative prognostic factor and a new therapeutic target in human neuroblastoma. Mol Cancer Ther. 2009;8:2461–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A, et al. The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma. Proc Natl Acad Sci USA. 2005;102:731–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Slamon DJ, Boone TC, Seeger RC, Keith DE, Chazin V, Lee HC, et al. Identification and characterization of the protein encoded by the human N-myc oncogene. Science. 1986;232:768–72.

    Article  PubMed  CAS  Google Scholar 

  • Soriano A, Masanas M, Boloix A, et al. Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci. 2019;76(11):2231–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene. 2003;22:1002–11.

    Article  PubMed  CAS  Google Scholar 

  • Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, McDonagh C, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7:e38129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Roy N, Laureys G, Cheng NC, Willem P, Opdenakker G, Versteeg R, et al. 1;17 translocations and other chromosome 17 rearrangements in human primary neuroblastoma tumors and cell lines. Genes Chromosomes Cancer. 1994;10:103–14.

    Article  PubMed  Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White PS, Thompson PM, Gotoh T, Okawa ER, Igarashi J, Kok M, et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene. 2005;24:2684–94.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res. 2006;66:4549–52.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012a;11:1454–66.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Pu J, Qi T, Qi M, Yang C, Li S, et al. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene. 2012b;33:387–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond L. Stallings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lynch, J., Stallings, R.L. (2020). Genetics of Pediatric Tumors. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics