Skip to main content

Principles of Minimally Invasive Surgery

  • Living reference work entry
  • First Online:
Pediatric Surgery

Abstract

Minimally invasive surgical techniques have become utilized to perform increasingly complex procedures. Initially used in adults, technology and experience have allowed surgeons and urologists to limit the need for large incisions, and its growth in the pediatric population has also grown steadily. This chapter will describe current principles in minimally invasive pediatric urology, important considerations and future directions for this expanding field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andolfi C, Kumar R, Boysen WR, Gundeti MS. Current status of robotic surgery in pediatric urology. J Laparoendosc Adv Surg Tech A. 2019;29(2):159–66.

    Article  PubMed  Google Scholar 

  • Andolfi C, Adamic B, Oommen J, Gundeti MS. Robot-assisted laparoscopic pyeloplasty in infants and children: is it superior to conventional laparoscopy? World J Urol. 2020;38(8):1827–33.

    Article  PubMed  Google Scholar 

  • Andolfi C, Rodríguez VM, Galansky L, Gundeti MS. Infant robot-assisted laparoscopic pyeloplasty: outcomes at a single institution, and tips for safety and success. Eur Urol. 2021;80(5):621–31.

    Article  PubMed  Google Scholar 

  • Ansari M, Surekha S, Kapoor R. Safe and optimal Pneumoperitoneal pressure for Transperitoneal laparoscopic renal surgery in infant less than 10kg, looked beyond intraoperative period: a prospective and randomized study. In: 25th Congress of the European Society of Paediatric Urology. 2014.

    Google Scholar 

  • Awad H, Santilli S, Ohr M, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109:473–8.

    Article  PubMed  Google Scholar 

  • Azevedo JLMC, Azevedo OC, Miyahira SA, et al. Injuries caused by Veress needle insertion for creation of pneumoperitoneum: a systematic literature review. Surg Endosc. 2009;23:1428–32.

    Article  PubMed  Google Scholar 

  • Barbosa JABA, Barayan G, Gridley CM, et al. Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol. 2013;190:244–50.

    Article  PubMed  Google Scholar 

  • Bethea BT, Okamura AM, Kitagawa M, et al. Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A. 2004;14:191–5.

    Article  PubMed  Google Scholar 

  • Braga LHP, Pace K, DeMaria J, et al. Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur Urol. 2009;56:848–57.

    Article  PubMed  Google Scholar 

  • Cadeddu J, Fernandez R, Desai M, et al. Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single-site surgery: initial human experience. Surg Endosc. 2009;23:1894–9.

    Article  PubMed  Google Scholar 

  • Castro CA, Alqassis A, Smith S, et al. A wireless robot for networked laparoscopy. IEEE Trans Biomed Eng. 2013;60:930–6.

    Article  PubMed  Google Scholar 

  • Chang C, Steinberg Z, Shah A, et al. Patient positioning and port placement for robot-assisted surgery. J Endourol Endourol Soc. 2014;28:631–8.

    Article  Google Scholar 

  • Cheng MA, Todorov A, Tempelhoff R, et al. The effect of prone positioning on intraocular pressure in anesthetized patients. Anesthesiology. 2001;95:1351–5.

    Article  CAS  PubMed  Google Scholar 

  • Cortesi N, Ferrari P, Zambarda E, et al. Diagnosis of bilateral abdominal cryptorchidism by laparoscopy. Endoscopy. 1976;8:33–4.

    Article  CAS  PubMed  Google Scholar 

  • Dangle PP, Kearns J, Anderson B, et al. Outcomes of infants undergoing robot-assisted laparoscopic pyeloplasty compared to open repair. J Urol. 2013;190:2221–6.

    Article  PubMed  Google Scholar 

  • Freilich DA, Penna FJ, Nelson CP, et al. Parental satisfaction after open versus robot assisted laparoscopic pyeloplasty: results from modified Glasgow Children’s benefit inventory survey. J Urol. 2010;183:704–8.

    Article  PubMed  Google Scholar 

  • Galansky L, Andolfi C, Adamic B, Gundeti MS. Continent cutaneous catheterizable channels in pediatric patients: a decade of experience with open and robotic approaches in a single center. Eur Urol. 2021;79(6):866–78.

    Article  PubMed  Google Scholar 

  • Greenwald D, Mohanty A, Andolfi C, Gundeti MS. Systematic review and meta-analysis of pediatric robot-assisted laparoscopic pyeloplasty. J Endourol. 2022;36(4):448–61.

    Article  PubMed  Google Scholar 

  • Gundeti MS, Castellan MA. Editorial: robotic assisted laparoscopic surgery (RALS) in pediatric urology. Front Pediatr. 2020;8:85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gundeti MS, Acharya SS, Zagaja GP, et al. Paediatric robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy (RALIMA): feasibility of and initial experience with the University of Chicago technique. BJU Int. 2011;107:962–9.

    Article  PubMed  Google Scholar 

  • Haleem S, Ansari MM, Mussarat J, et al. Cortisol and glycemic response to open and laparoscopic cholecystectomy-a comparative evaluation. J Anaesth Clin Pharmacol. 2008;24:437–40.

    CAS  Google Scholar 

  • Jocham D, Witjes F, Wagner S, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005;174:862–6. discussion 866

    Article  PubMed  Google Scholar 

  • Kaouk JH, Goel RK, Haber G-P, et al. Robotic single-port transumbilical surgery in humans: initial report. BJU Int. 2009;103:366–9.

    Article  PubMed  Google Scholar 

  • Kaouk JH, Autorino R, Kim FJ, et al. Laparoendoscopic single-site surgery in urology: worldwide multi-institutional analysis of 1076 cases. Eur Urol. 2011;60:998–1005.

    Article  PubMed  Google Scholar 

  • Kaouk JH, Haber G-P, Autorino R, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–43. https://doi.org/10.1016/j.eururo.2014.06.039.Epub 2014 Jul 17.

  • Krane LS, Manny TB, Hemal AK. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Urology. 2012;80:110–6.

    Article  PubMed  Google Scholar 

  • Kutikov A, Resnick M, Casale P. Laparoscopic pyeloplasty in the infant younger than 6 months – is it technically possible? J Urol. 2006;175:1477–9. discussion 1479

    Article  PubMed  Google Scholar 

  • Lavery HJ, Thaly R, Albala D, et al. Robotic equipment malfunction during robotic prostatectomy: a multi-institutional study. J Endourol Endourol Soc. 2008;22:2165–8.

    Article  Google Scholar 

  • Lee RS, Retik AB, Borer JG, et al. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006;175:683–7. discussion 687

    Article  PubMed  Google Scholar 

  • Liu DB, Ellimoottil C, Flum AS, et al: Contemporary national comparison of open, laparoscopic, and robotic-assisted laparoscopic pediatric pyeloplasty. J Pediatr Urol. 2014;(4):610–5. https://doi.org/10.1016/j.jpurol.2014.06.010.Epub 2014 Jul 11.

  • Marescaux J, Leroy J, Rubino F, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marescaux J, Rubino F, Arenas M, et al. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA J Am Med Assoc. 2004;292:2214–5.

    CAS  Google Scholar 

  • McHoney M, Corizia L, Eaton S, et al. Carbon dioxide elimination during laparoscopy in children is age dependent. J Pediatr Surg. 2003;38: 105–110:discussion 105–110.

    Google Scholar 

  • Myers MA, Hamilton SR, Bogosian AJ, et al. Visual loss as a complication of spine surgery. A review of 37 cases. Spine. 1997;22:1325–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Wasa M, Kawahara H, et al. Revision laparoscopy for incarcerated hernia at a 5-mm trocar site following pediatric laparoscopic surgery. Surg Laparosc Endosc Percutan Tech. 1999;9:294–5.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Passerotti CC, Penna FJ, et al. Robotic assisted laparoscopic Mitrofanoff appendicovesicostomy: preliminary experience in a pediatric population. J Urol. 2009;182:1528–34.

    Article  PubMed  Google Scholar 

  • Palermo TM, Tripi PA, Burgess E. Parental presence during anaesthesia induction for outpatient surgery of the infant. Paediatr Anaesth. 2000;10:487–91.

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Kwon J-Y, Kim KJ. Carbon dioxide embolism during laparoscopic surgery. Yonsei Med J. 2012;53:459–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Passerotti CC, Nguyen HT, Retik AB, et al. Patterns and predictors of laparoscopic complications in pediatric urology: the role of ongoing surgical volume and access techniques. J Urol. 2008;180:681–5.

    Article  PubMed  Google Scholar 

  • Paydar OH, Wottawa CR, Fan RE, et al. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc. 2012, 2012:2355–8.

    Google Scholar 

  • Peters CA. Laparoscopy in pediatric urology. Curr Opin Urol. 2004;14:67–73.

    Article  PubMed  Google Scholar 

  • Rice M, Glasper A, Keeton D, et al. The effect of a preoperative education programme on perioperative anxiety in children: an observational study. Paediatr Anaesth. 2008;18:426–30.

    Article  PubMed  Google Scholar 

  • Rowe CK, Pierce MW, Tecci KC, et al. A comparative direct cost analysis of pediatric urologic robot-assisted laparoscopic surgery versus open surgery: could robot-assisted surgery be less expensive? J Endourol Endourol Soc. 2012;26:871–7.

    Article  Google Scholar 

  • Smith RP, Oliver JL, Peters CA. Pediatric robotic extravesical ureteral reimplantation: comparison with open surgery. J Urol. 2011;185:1876–81.

    Article  PubMed  Google Scholar 

  • Su L-M, Vagvolgyi BP, Agarwal R, et al. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73:896–900.

    Article  PubMed  Google Scholar 

  • Tiwari MM, Reynoso JF, Lehman AC, et al. In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg. 2010;2:217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias JD. Anaesthesia for minimally invasive surgery in children. Best Pract Res Clin Anaesthesiol. 2002;16:115–30.

    Article  PubMed  Google Scholar 

  • Ukimura O, Gill IS. Imaging-assisted endoscopic surgery: Cleveland Clinic experience. J Endourol Endourol Soc. 2008;22:803–10.

    Article  Google Scholar 

  • Varughese AM, Hagerman N, Patino M, et al. A comparison of inhalational inductions for children in the operating room vs the induction room. Paediatr Anaesth. 2012;22:327–34.

    Article  PubMed  Google Scholar 

  • Volonté F, Pugin F, Bucher P, et al. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci. 2011;18:506–9.

    Article  PubMed  Google Scholar 

  • Waldhaussen JH. Incisional hernia in a 5-mm trocar site following pediatric laparoscopy. J Laparoendosc Surg. 1996;6(Suppl 1):S89–90.

    PubMed  Google Scholar 

  • Wedgewood J, Doyle E. Anaesthesia and laparoscopic surgery in children. Paediatr Anaesth. 2001;11:391–9.

    Article  CAS  PubMed  Google Scholar 

  • White MA, Haber G-P, Autorino R, et al. Robotic laparoendoscopic single-site radical prostatectomy: technique and early outcomes. Eur Urol. 2010;58:544–50.

    Article  PubMed  Google Scholar 

  • White MA, Autorino R, Spana G, et al. Robotic laparoendoscopic single-site radical nephrectomy: surgical technique and comparative outcomes. Eur Urol. 2011;59:815–22.

    Article  PubMed  Google Scholar 

  • Yee DS, Duel BP. Omental herniation through a 3-mm umbilical trocar site. J Endourol Endourol Soc. 2006;20:133–4.

    Article  Google Scholar 

  • Yu H, Jiang J, Xie L, et al. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery. Minim Invasive Ther Allied Technol. 2014;23:136–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Pariser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pariser, J.J., Anderson, B.B., Gundeti, M.S. (2022). Principles of Minimally Invasive Surgery. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_169-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_169-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics