Skip to main content

Innovations in Minimally Invasive Surgery in Children

  • Living reference work entry
  • First Online:
Book cover Pediatric Surgery
  • 294 Accesses

Abstract

This chapter provides an overview of recent innovations in pediatric minimally invasive surgery that have enabled pediatric surgeons to operate safely on their smallest patients through tiny incisions. The development of size appropriate laparoscopes and instruments has been key in the development of this specialty. We also discuss NOTES, telemedicine, and robotic surgery in our pediatric population.

The numerous MIS techniques, originally used in the adult population, have been successfully applied to our pediatric patients. MIS has become routine for the treatment of many pediatric surgical disease processes, due to the numerous benefits these techniques confer on the patient: decreased wound complications, shorter length of stay, and improved postoperative pain. Inherent in the application of these complex techniques to infants and children are many risks due to the size of these patients. Pediatric surgeons must be aware and understand these risks if they are to successfully and safely practice MIS.

MIS will continue to develop as long as industry is committed to developing pediatric equipment to provide better care for our patients. Surgical training must continue to evolve, to ensure that the next generation of surgeons is adequately trained in these complex techniques. The future of pediatric MIS is exciting for our patients and indeed the specialty of pediatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abell TL, et al. Gastric electrical stimulation in intractable symptomatic gastroparesis. Digestion. 2002;66(4):204–12.

    Article  PubMed  Google Scholar 

  • Adikibi BT, et al. The risks of minimal access surgery in children: an aid to consent. J Pediatr Surg. 2012;47(3):601–5.

    Article  PubMed  Google Scholar 

  • Agrawal S, Slovick A, Soon Y. Single-port laparoscopy for the drainage of abdominal infected fluid collections in children, with the TriPort system: initial experience of 2 cases. Surg Innov. 2010;17(3):261–3.

    Article  PubMed  Google Scholar 

  • Anderson JE, et al. The first national examination of outcomes and trends in robotic surgery in the United States. J Am Coll Surg. 2012;215(1):107–14; discussion 114–6.

    Google Scholar 

  • Ayinala S, et al. Temporary gastric electrical stimulation with orally or PEG-placed electrodes in patients with drug refractory gastroparesis. Gastrointest Endosc. 2005;61(3):455–61.

    Article  PubMed  Google Scholar 

  • Berlinger NT. Robotic surgery – squeezing into tight places. N Engl J Med. 2006;354(20):2099–101.

    Article  CAS  PubMed  Google Scholar 

  • Blatnik JA, et al. Stitch versus scar – evaluation of laparoscopic pediatric inguinal hernia repair: a pilot study in a rabbit model. J Laparoendosc Adv Surg Tech A. 2012;22(8):848–51.

    Article  PubMed  Google Scholar 

  • Blinman T, Ponsky T. Pediatric minimally invasive surgery: laparoscopy and thoracoscopy in infants and children. Pediatrics. 2012;130(3):539–49.

    Article  PubMed  Google Scholar 

  • Bochner BH, et al. A randomized trial of robot-assisted laparoscopic radical cystectomy. N Engl J Med. 2014;371(4):389–90.

    Article  CAS  PubMed  Google Scholar 

  • Bruns NE, Soldes OS, Ponsky TA. Robotic surgery may not “Make the Cut” in pediatrics. Front Pediatr. 2015;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadière G-B, Buset M, et al. Antireflux transoral incisionless fundoplication using EsophyX: 12-month results of a prospective multicenter study. World J Surg. 2008a;32(8):1676–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadière GB, Rajan A, et al. Endoluminal fundoplication by a transoral device for the treatment of GERD: a feasibility study. Surg Endosc. 2008b;22(2):333–42.

    Article  PubMed  Google Scholar 

  • Chandra V, et al. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery. 2010;147(6):830–9.

    Article  PubMed  Google Scholar 

  • Cooper MA, et al. Underreporting of robotic surgery complications. J Healthc Qual. 2015;37(2):133–8.

    Article  PubMed  Google Scholar 

  • Cundy TP, et al. The first decade of robotic surgery in children. J Pediatr Surg. 2013;48(4):858–65.

    Article  PubMed  Google Scholar 

  • Dominguez G, et al. Retraction and triangulation with neodymium magnetic forceps for single-port laparoscopic cholecystectomy. Surg Endosc. 2009;23(7):1660–6.

    Article  PubMed  Google Scholar 

  • Forster J, et al. Gastric pacing is a new surgical treatment for gastroparesis. Am J Surg. 2001;182(6):676–81.

    Article  CAS  PubMed  Google Scholar 

  • Franklin ME, et al. Needlescopic cholecystectomy: lessons learned in 10 years of experience. JSLS. 2006;10(1):43–6.

    PubMed  PubMed Central  Google Scholar 

  • Fujimoto T, et al. Laparoscopic surgery in newborn infants. Surg Endosc. 1999;13(8):773–7.

    Article  CAS  PubMed  Google Scholar 

  • Gagner M, Garcia-Ruiz A. Technical aspects of minimally invasive abdominal surgery performed with needlescopic instruments. Surg Laparosc Endosc. 1998;8(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  • Geller EJ, Matthews CA. Impact of robotic operative efficiency on profitability. Am J Obstet Gynecol. 2013;209(1):20.e1–5.

    Article  Google Scholar 

  • Hyman P, et al. Feasibility and safety of gastric electrical stimulation for a child with intractable visceral pain and gastroparesis. J Pediatr Gastroenterol Nutr. 2009;49(5):635–8.

    Article  PubMed  Google Scholar 

  • Islam S, et al. Gastric electrical stimulation for children with intractable nausea and gastroparesis. J Pediatr Surg. 2008;43(3):437–42.

    Article  PubMed  Google Scholar 

  • Islam S, Adams SD, Mahomed AA. SILS: is it cost- and time-effective compared to standard pediatric laparoscopic surgery? Minim Invasive Surg. 2012;2012:807609.

    PubMed  PubMed Central  Google Scholar 

  • Jones VS, Cohen RC. Two decades of minimally invasive pediatric surgery-taking stock. J Pediatr Surg. 2008;43(9):1653–9.

    Article  PubMed  Google Scholar 

  • Kalfa N, et al. Tolerance of laparoscopy and thoracoscopy in neonates. Pediatrics. 2005;116(6):e785–91.

    Article  PubMed  Google Scholar 

  • Krpata DM, Ponsky TA. Instrumentation and equipment for single-site umbilical laparoscopic surgery. Semin Pediatr Surg. 2011;20(4):190–5.

    Article  PubMed  Google Scholar 

  • Krpata DM, Ponsky TA. Needlescopic surgery: what’s in the toolbox? Surg Endosc. 2013;27(3):1040–4.

    Article  PubMed  Google Scholar 

  • Lam TY, et al. Radially expanding trocar: a less painful alternative for laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 2000;10(5):269–73.

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, et al. Two-port needlescopic cholecystectomy: prospective study of 100 cases. Hong Kong Med J. 2005;11(1):30–5.

    CAS  PubMed  Google Scholar 

  • Lee RS, et al. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006;175(2):683–7; discussion 687.

    Google Scholar 

  • Leroy J, et al. No-scar transanal total mesorectal excision: the last step to pure NOTES for colorectal surgery. JAMA Surg. 2013;148(3):226–30; discussion 231.

    Google Scholar 

  • Marescaux J, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattei P. Minimally invasive surgery in the diagnosis and treatment of abdominal pain in children. Curr Opin Pediatr. 2007;19(3):338–43.

    Article  PubMed  Google Scholar 

  • Meehan JJ. Robotic surgery for pediatric tumors. Cancer J. 2013;19(2):183–8.

    Article  PubMed  Google Scholar 

  • Meininger DD, et al. Totally endoscopic Nissen fundoplication with a robotic system in a child. Surg Endosc. 2001;15(11):1360.

    Article  CAS  PubMed  Google Scholar 

  • Ming YC, et al. Experience of single-incision laparoscopy in children. Minim Access Surg. 2016;12(3):245–7.

    Article  Google Scholar 

  • Mintz Y, et al. NOTES: a review of the technical problems encountered and their solutions. J Laparoendosc Adv Surg Tech A. 2008;18(4):583–7.

    Article  PubMed  Google Scholar 

  • Muls V, et al. Three-year results of a multicenter prospective study of transoral incisionless fundoplication. Surg Innov. 2013;20(4):321–30.

    Article  PubMed  Google Scholar 

  • Ostlie DJ, et al. Patient scar assessment after single-incision versus four-port laparoscopic cholecystectomy: long-term follow-up from a prospective randomized trial. J Laparoendosc Adv Surg Tech A. 2013;23(6):553–5.

    Article  PubMed  Google Scholar 

  • Padilla BE, et al. The use of magnets with single-site umbilical laparoscopic surgery. Semin Pediatr Surg. 2011;20(4):224–31.

    Article  PubMed  Google Scholar 

  • Padilla BE, et al. Initial experience with magnet-assisted single trocar appendectomy in children. J Laparoendosc Adv Surg Tech A. 2013;23(5):463–6.

    Article  PubMed  Google Scholar 

  • Park MI, Camilleri M. Gastroparesis: clinical update. Am J Gastroenterol. 2006;101(5):1129–39.

    Article  PubMed  Google Scholar 

  • Park S, et al. Trocar-less instrumentation for laparoscopy: magnetic positioning of intra-abdominal camera and retractor. Ann Surg. 2007;245:379–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parkman HP, et al. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004;127(5):1592–622.

    Article  PubMed  Google Scholar 

  • Pearl JP, Ponsky JL. Natural orifice translumenal endoscopic surgery: a critical review. J Gastrointest Surg. 2008;12(7):1293–300.

    Article  PubMed  Google Scholar 

  • Peters CA. Robotically assisted surgery in pediatric urology. Urol Clin N Am. 2004;31(4):743–52.

    Article  Google Scholar 

  • Ponsky TA. Single port laparoscopic cholecystectomy in adults and children: tools and techniques. J Am Coll Surg. 2009;209(5):e1–6.

    Article  PubMed  Google Scholar 

  • Ponsky TA, Krpata DM. Single-port laparoscopy: considerations in children. J Minim Access Surg. 2011;7(1):96–8.

    PubMed  PubMed Central  Google Scholar 

  • Ponsky TA, et al. Early experience with single-port laparoscopic surgery in children. J Laparoendosc Adv Surg Tech A. 2009;19(4):551–3.

    Article  PubMed  Google Scholar 

  • Riquelme M, Aranda A, Riquelme-Q M. Laparoscopic pediatric inguinal hernia repair: no ligation, just resection. J Laparoendosc Adv Surg Tech A. 2010;20(1):77–80.

    Article  PubMed  Google Scholar 

  • Rosser JC, Young SM, Klonsky J. Telementoring: an application whose time has come. Surg Endosc. 2007;21(8):1458–63.

    Article  PubMed  Google Scholar 

  • Rothenberg SS, Shipman K, Yoder S. Experience with modified single-port laparoscopic procedures in children. J Laparoendosc Adv Surg Tech A. 2009;19(5):695–8.

    Article  PubMed  Google Scholar 

  • Saldaña LJ, Targarona EM. Single-incision pediatric endosurgery: a systematic review. J Laparoendosc Adv Surg Tech A. 2013;23(5):467–80.

    Article  PubMed  Google Scholar 

  • Scott DJ, et al. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc. 2007;21(12):2308–16.

    Article  PubMed  Google Scholar 

  • Shih SP, et al. Hybrid minimally invasive surgery – a bridge between laparoscopic and translumenal surgery. Surg Endosc. 2007;21(8):1450–3.

    Article  CAS  PubMed  Google Scholar 

  • St Peter SD, et al. Single incision versus standard 3-port laparoscopic appendectomy: a prospective randomized trial. Ann Surg. 2011;254(4):586–90.

    Article  PubMed  Google Scholar 

  • Tagaya N, Rokkaku K, Kubota K. Needlescopic cholecystectomy versus needlescope-assisted laparoscopic cholecystectomy. Surg Laparosc Endosc Percutan Tech. 2007;17(5):375–9.

    Article  PubMed  Google Scholar 

  • Tichansky DS, Morton J, Jones DB. The SAGES manual of quality, outcomes and patient safety. New York: Springer Science+Business Media; 2012.

    Book  Google Scholar 

  • Tsuda S. Teleproctoring in surgery. In: Tichansky DS, Morton J, Jones DB, editors. The SAGES manual of quality, outcomes and patient safety. New York: Springer; 2012. p. 513–7.

    Chapter  Google Scholar 

  • Velhote MCP, Velhote CEP. A NOTES modification of the transanal pull-through. J Laparoendosc Adv Surg Tech A. 2009;19(2):255–7.

    Article  PubMed  Google Scholar 

  • Yee DS, et al. Initial comparison of robotic-assisted laparoscopic versus open pyeloplasty in children. Urology. 2006;67(3):599–602.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Ponsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Ponsky, T.A., Falk, G.A. (2016). Innovations in Minimally Invasive Surgery in Children. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics