Skip to main content

Tissue Engineering and Stem Cell Research

  • Living reference work entry
  • First Online:
Pediatric Surgery
  • 261 Accesses

Abstract

Congenital or acquired surgical conditions are associated to high morbidity and mortality, and most of the time functional replacement of the missing or damaged organ remains an unmet clinical need. Regenerative medicine has recently been established as an emerging interdisciplinary field focused on the repair, replacement, or regeneration of cells, tissues, or organs. So far, there has been success in the production and surgical replacement of organs such as the urethra, bladder, and trachea.

While regenerative medicine encompasses a number of different disciplines, when it is aimed toward organogenesis, the important components are appropriate cells and an appropriate scaffold. The employment of induced pluripotent cells may overcome the use of immunosuppression associated with embryonic stem cells. Moreover, amniotic fluid stem cells may be specifically relevant to the cure of congenital malformation and reduce the hazards associated with pluripotent cells such as tumorigenesis, rejection, difficulty in isolation, and ethical issues. Research on scaffold-cell interaction has indicated that beyond the need for suitable biomechanical properties and micro-architecture, an optimal scaffold must support cell-matrix signaling; decellularized scaffolds may hold an advantage toward this.

The success obtained so far in transplanting tissue-engineered structures has paved the way for the regeneration of more complex and solid organs. Herein, regenerative medicine could represent a valid solution to the shortage of donors for organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6. doi:10.1016/S0140-6736(06)68438-9.

    Article  PubMed  Google Scholar 

  • Badylak SF, et al. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A. 2011;17:1643–50. doi:10.1089/ten.TEA.2010.0739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptista PM, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53:604–17. doi:10.1002/hep.24067.

    Article  CAS  PubMed  Google Scholar 

  • Barker N, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7. doi:10.1038/nature06196.

    Article  CAS  PubMed  Google Scholar 

  • Bejjani GK, Zabramski J, Durasis Study G. Safety and efficacy of the porcine small intestinal submucosa dural substitute: results of a prospective multicenter study and literature review. J Neurosurg. 2007;106:1028–33. doi:10.3171/jns.2007.106.6.1028.

    Article  PubMed  Google Scholar 

  • Bhrany AD, et al. Development of an esophagus acellular matrix tissue scaffold. Tissue Eng. 2006;12:319–30. doi:10.1089/ten.2006.12.319.

    Article  CAS  PubMed  Google Scholar 

  • Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6. doi:10.1038/380064a0.

    Article  CAS  PubMed  Google Scholar 

  • Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online. 2009;18(Suppl 1):17–27.

    Article  PubMed  Google Scholar 

  • Champagne BJ, et al. Efficacy of anal fistula plug in closure of cryptoglandular fistulas: long-term follow-up. Dis Colon Rectum. 2006;49:1817–21. doi:10.1007/s10350-006-0755-3.

    Article  PubMed  Google Scholar 

  • Choi RS, Vacanti JP. Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc. 1997;29:848–51.

    Article  CAS  PubMed  Google Scholar 

  • Clough A, Ball J, Smith GS, Leibman S. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg. 2011;91:e15–6. doi:10.1016/j.athoracsur.2010.10.011.

    Article  PubMed  Google Scholar 

  • Dahl SL, et al. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011;3, 68ra69. doi:10.1126/scitranslmed.3001426.

    Google Scholar 

  • De Coppi P. Regenerative medicine for congenital malformations. J Pediatr Surg. 2013;48:273–80. doi:10.1016/j.jpedsurg.2012.11.005.

    Article  PubMed  Google Scholar 

  • De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6. doi:10.1038/nbt1274.

    Article  PubMed  Google Scholar 

  • Ditadi A, et al. Human and murine amniotic fluid c-kit+Lin- cells display hematopoietic activity. Blood. 2009;113:3953–60. doi:10.1182/blood-2008-10-182105.

    Article  CAS  PubMed  Google Scholar 

  • Dunn JC. Is the tissue-engineered intestine clinically viable? Nat Clin Pract Gastroenterol Hepatol. 2008;5:366–7. doi:10.1038/ncpgasthep1151.

    Article  PubMed  Google Scholar 

  • Elliott MJ, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012. doi:10.1016/S0140-6736(12)60737-5.

    Google Scholar 

  • Fishman JM, et al. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci U S A. 2013;110:14360–5. doi:10.1073/pnas.1213228110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin Jr ME, et al. The use of porcine small intestinal submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: long-term follow-up. Surg Endosc. 2008;22:1941–6. doi:10.1007/s00464-008-0005-y.

    Article  PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs JR, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004; 39:834–8; discussion 834–8.

    Google Scholar 

  • Grikscheit TC, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240:748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwitz EM, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5:309–13. doi:10.1038/6529.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz EM, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5. doi:10.1080/14653240500319234.

    Article  CAS  PubMed  Google Scholar 

  • Jungebluth P, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet. 2011;378:1997–2004. doi:10.1016/S0140-6736(11)61715-7.

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312–9. doi:10.1038/nbt.3413.

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, et al. Regenerative signals for tissue-engineered small intestine. Transplant Proc. 1999;31:657–60.

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc K, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79:1607–14.

    Article  PubMed  Google Scholar 

  • Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.

    Article  PubMed  Google Scholar 

  • Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177–81. doi:10.1038/nbt1335.

    Article  CAS  PubMed  Google Scholar 

  • Moschidou D, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012. doi:10.1038/mt.2012.117.

    Google Scholar 

  • Ott HC, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21. doi:10.1038/nm1684.

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33. doi:10.1038/nm.2193.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki M, et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006;79:771–8. doi:10.1002/jbm.a.30885.

    Article  PubMed  Google Scholar 

  • Piccoli M, et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 2012;30:1675–84. doi:10.1002/stem.1134.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  • Raya-Rivera A, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82. doi:10.1016/S0140-6736(10)62354-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raya-Rivera AM, Esquiliano D, Fierro-Pastrana R, López-Bayghen E, Valencia P, Ordorica-Flores R, Soker S, Yoo JJ, Atala A.Tissue-engineered autologous vaginal organs in patients: a pilot cohort study. Lancet. 2014;384(9940):329–36.

    Article  PubMed  Google Scholar 

  • Sala FG, Kunisaki SM, Ochoa ER, Vacanti J, Grikscheit TC. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156:205–12. doi:10.1016/j.jss.2009.03.062.

    Article  PubMed  Google Scholar 

  • Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–3. doi:10.1056/NEJM200102153440717.

    Article  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72. doi:10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater. 1994;5:151–7. doi:10.1002/jab.770050208.

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  • Totonelli G, et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials. 2012;33:3401–10. doi:10.1016/j.biomaterials.2012.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totonelli G, et al. Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int. 2013;29:87–95. doi:10.1007/s00383-012-3194-3.

    Article  PubMed  Google Scholar 

  • Turner CG, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46:57–61. doi:10.1016/j.jpedsurg.2010.09.063.

    Article  PubMed  Google Scholar 

  • Uygun BE, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20. doi:10.1038/nm.2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uygun BE. et al. Decellularization and recellularization of whole livers. J Vis Exp. 2011. doi:10.3791/2394.

    Google Scholar 

  • Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67:478–91.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev. 2008;22:1987–97. doi:10.1101/gad.1689808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. doi:10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo De Coppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this entry

Cite this entry

De Coppi, P. (2017). Tissue Engineering and Stem Cell Research. In: Puri, P. (eds) Pediatric Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38482-0_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38482-0_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38482-0

  • Online ISBN: 978-3-642-38482-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics