Skip to main content

Neuroborreliose und FSME

  • Living reference work entry
  • First Online:
  • 633 Accesses

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Die beiden häufigsten durch Zecken übertragenen Erkrankungen des Nervensystems in Europa sind die Neuroborreliose und die Frühsommer-Meningoenzephalitis (FSME). Abgesehen vom Übertragungsmodus und der Verursachung neurologischer Symptome weisen beide Erkrankungen mehr Unterschiede als Gemeinsamkeiten auf. Die Neuroborreliose ist kausal behandelbar, gegen die FSME kann man sich durch eine Impfung schützen. Die Gesamtprognose ist bei der behandelten Neuroborreliose wesentlich günstiger als bei der FSME.

This is a preview of subscription content, log in via an institution.

Literatur

  • Benedetti F (2014) Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84(3):623–637

    Article  CAS  Google Scholar 

  • Bernardino AL et al (2008) Toll-like receptors: insights into their possible role in the pathogenesis of Lyme neuroborreliosis. Infect Immun 76(10):4385–4395

    Article  CAS  Google Scholar 

  • Bujak DI et al (1996) Clinical and neurocognitive features of the post Lyme syndrome. J Rheumatol 23:1392–1397

    CAS  PubMed  Google Scholar 

  • Bunikis J, Barbour AG (2002) Laboratory testing for suspected Lyme disease. Med Clin North Am 86(2):311–340

    Article  CAS  Google Scholar 

  • Dersch R et al (2014) Efficacy and safety of pharmacological treatments for neuroborreliosis – protocol for a systematic review. Syst Rev 3:117

    Article  Google Scholar 

  • Dersch R et al (2015) Efficacy and safety of pharmacological treatments for acute Lyme neuroborreliosis – a systematic review. Eur J Neurol 22(9):1249–1259

    Article  CAS  Google Scholar 

  • Ecker M et al (1999) Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80(Pt 1):179–185

    Article  CAS  Google Scholar 

  • Garin C, Bujadoux C (1922) Paralysie par les tiques. J Med Lyon 71:765–767

    Google Scholar 

  • Gunther G et al (1997) Tick-borne encephalitis in Sweden in relation to aseptic meningo-encephalitis of other etiology: a prospective study of clinical course and outcome. J Neurol 244(4):230–238

    Article  CAS  Google Scholar 

  • Hemmer B et al (1997) Generalised motor neuron disease as an unusual manifestation of Borrelia burgdorferi infection. J Neurol Neurosurg Psychiatry 63:257–258

    Article  CAS  Google Scholar 

  • Holmgren AR, Matteson EL (2006) Lyme myositis. Arthritis Rheum 54(8):2697–2700

    Article  Google Scholar 

  • Holzmann H (2003) Diagnosis of tick-borne encephalitis. Vaccine 21(Suppl 1):S36–S40

    Article  Google Scholar 

  • Kaiser R (1995) Intrathecal immune response in patients with neuroborreliosis: specificity of antibodies for neuronal proteins. J Neurol 242:319–325

    Article  CAS  Google Scholar 

  • Kaiser R (1998) Neuroborreliosis. J Neurol 245:247–255

    Article  CAS  Google Scholar 

  • Kaiser R (1999) The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98: a prospective study of 656 patients. Brain 122(Pt 11):2067–2078

    Article  Google Scholar 

  • Kaiser R (2004) Clinical courses of acute and chronic neuroborreliosis following treatment with ceftriaxone. Nervenarzt 75(6):553–557

    Article  CAS  Google Scholar 

  • Kaiser R (2011) Long-term prognosis of patients with primary myelitic manifestation of tick-borne encephalitis: a trend analysis covering 10 years. Nervenarzt 82(8):1020–1025

    Article  CAS  Google Scholar 

  • Kaiser R, Lucking CH (1993) Intrathecal synthesis of specific antibodies in neuroborreliosis. Comparison of different ELISA techniques and calculation methods. J Neurol Sci 118:64–72

    Article  CAS  Google Scholar 

  • Kaiser R et al (1997) Follow-up and prognosis of early summer meningoencephalitis. Nervenarzt 68(4):324–330

    Article  CAS  Google Scholar 

  • Kindstrand E et al (2000) Polyneuropathy in late Lyme borreliosis – a clinical, neurophysiological and morphological description. Acta Neurol Scand 101:47–52

    Article  CAS  Google Scholar 

  • Kohler J, Thoden U (1987) Pain syndromes in tick-borne neuroborreliosis. Clinical aspects and differential diagnosis. Schmerz 1(2):107–113

    Article  CAS  Google Scholar 

  • Kruger H et al (1989) Meningoradiculitis and encephalomyelitis due to Borrelia burgdorferi: a follow-up study of 72 patients over 27 years. J Neurol 236:322–328

    Article  CAS  Google Scholar 

  • Leite LM et al (2011) Anti-inflammatory properties of doxycycline and minocycline in experimental models: an in vivo and in vitro comparative study. Inflammopharmacology 19(2):99–110

    Article  CAS  Google Scholar 

  • Muller-Felber W et al (1993) Myositis in Lyme borreliosis: an immunohistochemical study of seven patients. J Neurol Sci 118:207–212

    Article  CAS  Google Scholar 

  • Mygland A et al (2006) Chronic polyneuropathy and Lyme disease. Eur J Neurol 13(11):1213–1215

    Article  CAS  Google Scholar 

  • Nieman GF, Zerler BR (2001) A role for the anti-inflammatory properties of tetracyclines in the prevention of acute lung injury. Curr Med Chem 8(3):317–325

    Article  CAS  Google Scholar 

  • Reik L (1991) Lyme disease and the nervous system. Thieme Medical Publishers, New York

    Google Scholar 

  • Reik L et al (1985) Demyelinating encephalopathy in Lyme disease. Neurology 35:267–269

    Article  Google Scholar 

  • Rupprecht TA et al (2008a) Autoimmune-mediated polyneuropathy triggered by borrelial infection? Muscle Nerve 37(6):781–785

    Article  Google Scholar 

  • Rupprecht TA et al (2008b) The pathogenesis of Lyme neuroborreliosis: from infection to inflammation. Mol Med 14(3–4):205–212

    CAS  PubMed  Google Scholar 

  • Rupprecht TA et al (2014) CXCL13: a biomarker for acute Lyme neuroborreliosis: investigation of the predictive value in the clinical routine. Nervenarzt 85(4):459–464

    Article  CAS  Google Scholar 

  • Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex – clinical significance of genomic species? Clin Microbiol Infect 17(4):487–493

    Article  CAS  Google Scholar 

  • Tikka T et al (2001) Tetracycline derivatives and ceftriaxone, a cephalosporin antibiotic, protect neurons against apoptosis induced by ionizing radiation. J Neurochem 78(6):1409–1414

    Article  CAS  Google Scholar 

  • Wormser GP (2006) Clinical practice. Early Lyme disease. N Engl J Med 354(26):2794–2801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaiser, R. (2018). Neuroborreliose und FSME. In: Berlit, P. (eds) Klinische Neurologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44768-0_101-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44768-0_101-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44768-0

  • Online ISBN: 978-3-662-44768-0

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics