Skip to main content

Diagnostische Neuroradiologie

  • Living reference work entry
  • First Online:
Klinische Neurologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 580 Accesses

Zusammenfassung

Neuroradiologische Untersuchungen umfassen die Untersuchungen von Schädel, Wirbelsäule, Hirn und Rückenmark mittels Röntgennativbildern, Computertomografie (CT), Magnetresonanztomografie (MRT), Angiografie und Myelografie. Die klassischen Röntgennativuntersuchungen von Schädel und Wirbelsäule sind in den letzten Jahren zunehmend durch die modernen Schnittbildverfahren verdrängt worden, liefern aber bei bestimmten Fragestellungen noch ergänzende Informationen. Die Schnittbildverfahren Computertomografie und Magnetresonanztomografie sind heute die diagnostischen Säulen bei neuroradiologischen Fragestellungen, wobei die MRT auch funktionelle Informationen liefern kann. In der Neurobildgebung werden zunehmend Hochfeld-Scanner bei 3 Tesla Feldstärke eingesetzt, die bei schnellerer Messzeit eine höhere Auflösung morphologischer und funktioneller MR-Untersuchungen ermöglichen. Während die Anzahl der diagnostischen Angiografien durch nichtinvasive Verfahren der Gefäßdarstellung wie die CT- und MR-Angiografie weiter zurückging, nehmen die interventionellen Verfahren nicht zuletzt durch die Thrombektomie beim Schlaganfall und den Einsatz neuer Stents und Embolisationsmaterialien zu. Durch die kernspintomografische Diagnostik des Spinalkanals verringerte sich die Anzahl der Myelografien deutlich. Wenn jedoch die Weite des Spinalkanals auch unter funktionellen Bedingungen bedeutsam ist, hat die Myelografie immer noch ihren Platz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Allmendinger AM, Tang ER, Lui YW, Spektor V (2012) Imaging of stroke: part 1. Perfusion CT – overview of imaging technique, interpretation pearls, and common pitfalls. AJR Am J Roentgenol 198:52–62

    Article  PubMed  Google Scholar 

  • Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR 2nd, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker DA (2015) Review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma 32:1693–1721

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes PD, Taylor GA (1998) Imaging of the neonatal central nervous system. Neurosurg Clin N Am 9:17–47

    CAS  PubMed  Google Scholar 

  • Buchbinder BR (2016) Functional magnetic resonance imaging. Handb Clin Neurol 135:61–92

    Article  PubMed  Google Scholar 

  • Buchbinder BR, Cosgrove GR (1998) Cortical activation MR studies in brain disorders. Magn Reson Imaging Clin N Am 6:67–93

    CAS  PubMed  Google Scholar 

  • Campbell BC, Mitchell PJ, Kleinig TJ et al (2015) Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 372:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Canadian Agency for Drugs and Technologies in Health (2013) Appropriateness of CT imaging to support the diagnosis of stroke: a review of the clinical evidence [Internet]. Canadian Agency for Drugs and Technologies in Health, Ottawa

    Google Scholar 

  • Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID (2013) Understanding MRI: basic MR physics for physicians. Postgrad Med J 89:209–223

    Article  PubMed  Google Scholar 

  • Doppman JL, Krudy AG, Miller DL, Oldfield E, Di Chiro G (1983) Intraarterial digital subtraction angiography of spinal arteriovenous malformations. AJNR Am J Neuroradiol 4:1081–1085

    CAS  PubMed  Google Scholar 

  • Eilaghi A, Yeung T, d'Esterre C, Bauman G, Yartsev S, Easaw J, Fainardi E, Lee TY, Frayne R (2016) Quantitative perfusion and permeability biomarkers in brain cancer from tomographic CT and MR images. Biomark Cancer 8(Suppl 2):47–59

    PubMed  PubMed Central  Google Scholar 

  • Gafson A, Giovannoni G, Hawkes CH (2012) The diagnostic criteria for multiple sclerosis: from Charcot to McDonald. Mult Scler Relat Disord 1:9–14

    Article  PubMed  Google Scholar 

  • Haddar D, Haacke E, Sehgal V, Delproposto Z, Salamon G, Seror O, Sellier N (2004) Susceptibility weighted imaging. Theory and applications. J Radiol 85:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Hakky M, Pandey S, Kwak E, Jara H, Erbay SH (2013) Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI. AJR Am J Roentgenol 201:369–377

    Article  PubMed  Google Scholar 

  • Hong CS, Peterson EC, Ding D et al (2016) Intervention for A randomized trial of unruptured brain arteriovenous malformations (ARUBA) – eligible patients: an evidence-based review. Clin Neurol Neurosurg 150:133–138

    Article  PubMed  Google Scholar 

  • Jahng GH, Li KL, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15:554–577

    Article  PubMed  PubMed Central  Google Scholar 

  • Josey L, Curley M, Jafari Mousavi F, Taylor BV, Lucas R, Coulthard A (2012) Imaging and diagnostic criteria for Multiple Sclerosis: are we there yet? J Med Imaging Radiat Oncol 56:588–593

    Article  PubMed  Google Scholar 

  • Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757

    Article  PubMed  Google Scholar 

  • Khanna N, Altmeyer W, Zhuo J, Steven A (2015) Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J 28:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kini LG, Gee JC, Litt B (2016) Computational analysis in epilepsy neuroimaging: a survey of features and methods. Neuroimage Clin 11:515–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Leffers AM, Wagner A (2000) Neurologic complications of cerebral angiography. A retrospective study of complication rate and patient risk factors. Acta Radiol 41:204–210

    Article  CAS  PubMed  Google Scholar 

  • Lewine JD, Orrison WW Jr (1995) Magnetic source imaging: basic principles and applications in neuroradiology. Acad Radiol 2:436–440

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. https://doi.org/10.1016/S0140-6736(13)62302-8

  • Martin P, Bender B, Focke NK (2015) Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 5:188–203

    PubMed  PubMed Central  Google Scholar 

  • McLellan AM, Daniel S, Corcuera-Solano I, Joshi V, Tanenbaum LN (2014) Optimized imaging of the postoperative spine. Neuroimaging Clin N Am 24:349–364

    Article  PubMed  Google Scholar 

  • Medvid R, Ruiz A, Komotar RJ, Jagid JR, Ivan ME, Quencer RM, Desai MB (2015) Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol 36:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun Rev 13:518–524

    Article  PubMed  Google Scholar 

  • Mohammed W, Xunning H, Haibin S, Jingzhi M (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Orru’ E, Sorte DE, Gregg L, Wolinsky JP, Jallo GI, Bydon A, Tamargo RJ, Gailloud P (2016) Intraoperative spinal digital subtraction angiography: indications, technique, safety, and clinical impact. J Neurointerv Surg 9:601

    Article  PubMed  Google Scholar 

  • Rapalino O, Ratai EM (2016) Multiparametric imaging analysis: magnetic resonance spectroscopy. Magn Reson Imaging Clin N Am 24:671–686

    Article  CAS  PubMed  Google Scholar 

  • Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runge VM (2016) Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Investig Radiol 51:273–279

    CAS  Google Scholar 

  • Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58:433–441

    Article  PubMed  Google Scholar 

  • Wang Q, Zhang H, Zhang J, Wu C, Zhu W, Li F, Chen X, Xu B (2016) The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol 26:2670–2684

    Article  PubMed  Google Scholar 

  • Yeates A, Drayer B, Heinz ER, Osborne D (1985) Intra-arterial digital subtraction angiography of the spinal cord. Radiology 15:387–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Dörfler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dörfler, A., Forsting, M. (2018). Diagnostische Neuroradiologie. In: Berlit, P. (eds) Klinische Neurologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44768-0_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44768-0_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44768-0

  • Online ISBN: 978-3-662-44768-0

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics