Skip to main content

Damage and Failure in Layered Composite Structures

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Anisotropy; (Application of) continuum damage mechanics; (Application of) interface fracture mechanics; Computational modeling and simulation; Fiber-reinforced polymers; Laminated composites; Nonlinear response

Definitions

The modeling and simulation of the nonlinear mechanical response of laminated composites is treated. In the present context, a laminate consists of several stacked plies. Here, the smallest entities of consideration are the plies and their interfaces. Both are described by nonlinear elasto-damage constitutive laws. A number of approaches are introduced at material and interface level. Their utilization for structural simulations is discussed, including predictions for the response beyond peak load.

Introduction and Motivation

Laminated composites are widely used in lightweight design, typically in the form of shell structures. A number of plies with direction-dependent behavior are stacked together in various orientations to achieve preferable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen DH (1994) Damage evolution in laminates, chap 3. In: Talreja R (ed) Damage mechanics of composite materials. Composite materials series, vol 9. Elsevier Science Ltd., Oxford

    Google Scholar 

  • Allix O, Feissel P, Thévenet P (2003) A delay damage mesomodel of laminates under dynamic loading: basic aspects and identification issues. Compos Struct 81:1177–1191

    Article  Google Scholar 

  • Bak BL, Sarrado C, Turon A, Costa J (2014) Delamination under fatigue loads in composite laminates: a review on the observed phenomenology and computational methods. Appl Mech Rev 66(6):060803

    Article  Google Scholar 

  • Barbero EJ (ed) (2010) Introduction to composite materials design, 2nd edn. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Article  Google Scholar 

  • Camanho PP, Hallett SR (eds) (2015) Numerical modelling of failure in advanced composite materials. Woodhead Publishing series in composites science and engineering, vol 62. Woodhead Publishing, Cambridge

    Google Scholar 

  • Chen B, Pinho S, De Carvalho N, Baiz P, Tay T (2014) A floating node method for the modelling of discontinuities in composites. Eng Fract Mech 127:104–134

    Article  Google Scholar 

  • Dávila CG, Rose CA, Iarve EV (2013) Modeling fracture and complex crack networks in laminated composites. In: Mantic V (ed) Mathematical methods and models in composites. Computational and experimental methods in structures, vol 5. Imperial College Press, London, pp 297–347

    Chapter  Google Scholar 

  • Flatscher T, Schuecker C, Pettermann HE (2013) A constitutive ply model for stiffness degradation and plastic strain accumulation: its application to the third world wide failure exercise (Part A). J Comp Mat 47: 2575–2593

    Article  Google Scholar 

  • Gager J, Pettermann H (2015) Fem modeling of multilayered textile composites based on shell elements. Compos Part B Eng 77:46–51

    Article  Google Scholar 

  • Hallett S, Harper P (2015) Modelling delamination with cohesive interface elements. In: Numerical modelling of failure in advanced composite materials. Elsevier, Cambridge, pp 55–72

    Chapter  Google Scholar 

  • Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  • Johnson AF (2001) Modeling fabric reinforced composites und impact loads. Compos Part A 32:1197–1206

    Article  Google Scholar 

  • Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor & Francis Inc., Philadelphia

    Google Scholar 

  • Kaddour AS, Hinton MJE (2012) Special issue: evaluation of theories for predicting failure in polymer composite laminates under 3-D states of stress: part A of the second world-wide failure exercise (WWFE-II). J Compos Mater 46:19–20

    Article  Google Scholar 

  • Kaddour AS, Hinton MJ, Smith PA, Li SE (2013) Special issue: benchmarking of matrix cracking, damage and failure models for composites: comparison between theories: part A of the third world-wide failure exercise (WWFE-III). J Compos Mater 47:20–21

    Google Scholar 

  • Kashtalyan M, Soutis C (2002) Analysis of local delaminations in composite laminates with angle-ply matrix cracks. Int J Sol Struct 39:1515–1537

    Article  Google Scholar 

  • Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109–143

    Article  Google Scholar 

  • Kuna M, Roth S (2015) General remarks on cyclic cohesive zone models. Int J Fract 196(1–2):147–167

    Article  Google Scholar 

  • Ladevèze P, Lubineau G (2001) On a damage mesomodel for laminates: micro–meso relationships, possibilities and limits. Comp Sci Tech 61:2149–2158

    Article  Google Scholar 

  • Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38(11):2333–2341

    Article  Google Scholar 

  • Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates. Part I: constitutive model. Mech Mat 39(10):897–908

    Article  Google Scholar 

  • Mayugo JA, Camanho PP, Maimí P, Dávila CG (2006) A micromechanics-based damage model for [±θ∕90n]s composite laminates. Technical Report TM-2006-214285, NASA

    Google Scholar 

  • Meraghni F, Desrumaux F, Benzeggagh ML (2002) Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Compos Sci Tech 62:2087–2097

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, vol 185. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Nairn JA, Hu S (1994) Matrix microcracking. In: Talreja R (ed) Damage mechanics of composite materials, chap 6. Composite materials series, vol 9. Elsevier Science Ltd., Oxford

    Google Scholar 

  • Nettles AT, Biss EJ (1996) Low temperature mechanical testing of carbon-fiber/epoxy-resin composite materials. Technical Report TP-1996-3663, NASA

    Google Scholar 

  • Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P (2005) Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. Technical Report, TM-2005-213530, NASA

    Google Scholar 

  • Pinho ST, Robinson P, Iannucci L (2006) Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Tech 66:2069–2079

    Article  Google Scholar 

  • Pinho ST, Robinson P, Schuecker C, Camanho PP (2012) Material and structural response of polymer-matrix fibre-reinforced composites, wwfe-ii (part a). J Comput Mat 46:2313–2341

    Article  Google Scholar 

  • Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Tech 58:1045–1067

    Article  Google Scholar 

  • Quaresimin M, Susmel L, Talreja R (2010) Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int J Fatigue 32:2–16

    Article  Google Scholar 

  • Rabotnov JN (1969) Creep Problems in structural members. North-Holland series in applied mathematics and mechanics, vol 7. North-Holland, Amsterdam

    Google Scholar 

  • Schapery R (2000) Nonlinear viscoelastic solids. Int J Solids Struct 37(1):359–366

    Article  MathSciNet  Google Scholar 

  • Schuecker C, Pettermann HE (2008) Fiber reinforced laminates: extending the concept of mechanism based first ply failure prediction to progressive damage modeling. Arch Comput Meth Eng 15(2):163–184

    Article  Google Scholar 

  • Schuecker C, Dávila CG, Pettermann HE (2008) Modeling the non-linear response of fiber-reinforced laminates using a combined damage/plasticity model. Technical Report TM-2008-215314, NASA

    Google Scholar 

  • Schuecker C, Dávila CG, Rose CA (2010) Comparison of damage models for predicting the non-linear response of laminates under matrix dominated loading conditions. Technical Report NASA/TP-2010-216856, NASA Langley Research Center

    Google Scholar 

  • Schwab M, Todt M, Pettermann HE (2018) A multiscale approach for modelling impact on woven composites under consideration of the fabric topology. J Compos Mater 52(21):2859–2874

    Article  Google Scholar 

  • Sevenois RDB, Van Paepegem W (2015) Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques. Appl Mech Rev 67:020802–1–12

    Article  Google Scholar 

  • Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Comput Mat 5:58–80

    Article  Google Scholar 

  • Turon A, Davila CG, Camanho PP, Costa J (2007) An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fracture Mech 74(10):1665–1682

    Article  Google Scholar 

  • Vogler M, Rolfes M, Camanho PP (2013) Modeling the inelastic deformation and fracture of polymer composites – Part I: plasticity model. Mech Mat 59:50–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz E. Pettermann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pettermann, H.E., Schuecker, C. (2019). Damage and Failure in Layered Composite Structures. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_11-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics