Skip to main content

Creep Deformation

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Creep rupture; Creep; Damage; Lifetime; Viscoplastic flow

Definitions

The time-dependent plastic flow of materials under the conditions of constant load or stress is commonly called as creep. It takes place under long-term exposure to high levels of stress that are typically below the yield point of the material. Creep is more severe in materials that are subjected to elevated temperature for long periods, and near melting point. It always becomes faster with temperature increase (Kachanov 1958; Rabotnov 1969).

The rate of this deformation is a function of the material properties, time, temperature, and the applied structural load. Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function. Creep is usually of concern to engineers and metallurgists when evaluating components that operate under high stresses or high temperatures. The temperature range in which creep deformation may...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abo El Ata MM, Finnie I (1972) On the prediction of creep-rupture life of components under multiaxial stress. In: Proceedings of IUTAM symposium on creep in structures 1970. Springer, Gothenburg, pp 80–95

    Chapter  Google Scholar 

  • Ashby MF, Gandhi C, Taplin DMR (1979) Fracture-mechanism maps and their construction for f.c.c. metals and alloys. Acta Metall 27:699–729

    Article  Google Scholar 

  • Dietrich L, Kowalewski ZL (1997) Experimental investigation of an anisotropy in copper subjected to predeformation due to constant and monotonic loadings. Int J Plast 13:87–109

    Article  Google Scholar 

  • Dyson BF, Gibbons TB (1987) Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis. Acta Metall 35:2355–2369

    Article  Google Scholar 

  • Dyson BF, McLean D (1977) Creep of Nimonic 80A in torsion and tension. Met Sci 11:37–45

    Article  Google Scholar 

  • Fel D, Hsu DK, Warchol M (2001) Simultaneous velocity thickness and profile imaging by ultrasonic scan. J Nondestruct Eval 8:95–112

    Google Scholar 

  • Hayhurst DR (1972) Creep rupture under multi-axial states of stress. J Mech Phys Solids 20:381–390

    Article  Google Scholar 

  • Hayhurst DR (1983) On the role of creep continuum damage in structural mechanics. In: Wilshire B, Owen DRJ (eds) Engineering approaches to high temperature design. Pineridge Press, Swansea, pp 85–176

    Google Scholar 

  • Hayhurst DR, TrÄ…mpczyÅ„ski WA, Leckie FA (1980) Creep rupture under non-proportional loading. Acta Metall 28:1171–1183

    Article  Google Scholar 

  • Johnson AE, Henderson J, Mathur VD (1956) Combined stress fracture of commercial copper at 250 C. Engineer 202:261

    Google Scholar 

  • Johnson AE, Henderson J, Khan B (1962) Complex-stress creep, relaxation and fracture of metallic alloys. H.M.S.O, Edinburgh

    Google Scholar 

  • Kachanov LM (1958) The theory of creep (English translation edited by Kennedy AJ). National Lending Library, Boston Spa

    Google Scholar 

  • Kowalewski ZL (1995) Experimental evaluation of the influence of stress state type on creep characteristics of copper at 523K. Arch Mech 47:13–26

    Google Scholar 

  • Kowalewski ZL (1996) Biaxial creep study of copper on the basis of isochronous creep surfaces. Arch Mech 48:89–109

    Google Scholar 

  • Kowalewski ZL (2004) Isochronous creep rupture loci for metals under biaxial stress. J Strain Anal Eng Des 39:581–593

    Article  Google Scholar 

  • Kowalewski ZL (2014) Chapter: Thermo-creep damage in cu/Al alloys. In: Hetnarski R (ed) Encyclopedia of thermal stresses, vol 10. Springer, Dordrecht, pp 5558–5566

    Google Scholar 

  • Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. J Strain Anal 29:309–316

    Article  Google Scholar 

  • Kowalewski ZL, Szelążek J, Mackiewicz S, Pietrzak K, Augustyniak B (2009) Evaluation of damage development in steels subjected to exploitation loading – destructive and nondestructive techniques. J Multiscale Model 1:479–499

    Article  Google Scholar 

  • Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metall 25:1059–1070

    Article  Google Scholar 

  • Li B, Lin J, Yao X (2002) A novel evolutionary algorithm for determining unified creep damage constitutive equations. Int J Mech Sci 44:987–1002

    Article  Google Scholar 

  • Lin J, Yang J (1999) GA based multiple objective optimization for determining viscoplastic constitutive equations for superplastic alloys. Int J Plast 15:1181–1196

    Article  Google Scholar 

  • Lin J, Kowalewski ZL, Cao J (2005) Creep rupture of copper and aluminium alloy under combined loadings – experiments and their various descriptions. Int J Mech Sci 47:1038–1058

    Article  Google Scholar 

  • Litewka A, Hult J (1989) One parameter CDM model for creep rupture prediction. Eur J Mech A Solids 8:185–200

    Google Scholar 

  • Makowska K, Kowalewski ZL, Augustyniak B, Piotrowski L (2014) Determination of mechanical properties of P91 steel by means of magnetic Berkhausen emission. J Theor Appl Mech 52:181–188

    Google Scholar 

  • Makowska K, Piotrowski L, Kowalewski ZL (2017) Prediction of the mechanical properties of P91 steel by means of magneto-acoustic emission and acoustic birefringence. J Nondestruct Eval 36:43

    Google Scholar 

  • Martínez-Ona R, Pérez MC, Tecnatom SA (2000) Research on creep damage detection in reformer tubes by ultrasonic testing. In: Proceedings of 15th WCNDT Roma 2000, Madrid. http://www.ndt.net/article/wcndt00/papers/idn238/idn238.htm

  • Narayan R, Green RE Jr (1975) Ultrasonic attenuation monitoring of fatique damage in nuclear pressure vessel steel at high temperature. Mater Eval 33:25–36

    Google Scholar 

  • Ogi H, Minami Y, Aoki S, Hirao M (2000) Contactless monitoring of surface-wave attenuation and nonlinearity for evaluating remaining life of fatigued steel. In: Proceeding of 15th WCNDT Roma 2000. http://www.ndt.net/article/wcndt00/papers/idn184/idn184.htm

  • Piotrowski L, Augustyniak B, Chmielewski M, Kowalewski ZL (2010) Multiparameter analysis of the Barkhausen nosie signal and its application for the assessment of a plastic deformation level in the 13HMF grade steel. Meas Sci Technol 21:115702-1-7

    Google Scholar 

  • Piotrowski L, Augustyniak B, Chmielewski M, Kowalewski ZL (2011) Possibility of application of magnetoacoustic emission for the assessment of plastic deformation level in ferrous materials. IEEE Trans Magn 47:2087–2092

    Article  Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North Holland Publishing Company, Amsterdam

    MATH  Google Scholar 

  • Sablik MJ, Augustyniak B (1999) Wiley encyclopedia of electrical and electronics engineering, Webster JG (ed). Wiley, New York

    Google Scholar 

  • Sdobyrev VP (1959) Creep criterion for some high-temperature alloys in complex stress state (in Russian). Izv AN SSSR Mekh Mashinostr 6:12–19

    Google Scholar 

  • TrÄ…mpczyÅ„ski W, Kowalewski ZL (1986) A tension-torsion testing technique. In: Proceedings of the symposium on techniques for multiaxial creep testing. Elsevier Applied Science, London/New York, pp 79–92

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew L. Kowalewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kowalewski, Z.L., Ustrzycka, A. (2018). Creep Deformation. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_157-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_157-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics