Skip to main content

Creep Fatigue

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics
  • 104 Accesses

Synonyms

Creep-fatigue failures; Creep-fatigue interaction; Life estimation; Thermal stress and low-cycle fatigue

Definitions

When internal pressure and centrifugal stress are acting on the high-temperature components in creep regime, they are direct sources to cause creep failure. Not only these types of external stresses but also thermal stress may cause creep damage. The repeat of thermal stress induces fatigue damage, as reviewed in the textbooks (Manson 1966; Taira and Ohtani 1979; Viswanathan 1993). Here, of particular importance is that the fatigue and creep damages progress in an interacted manner with each other called creep-fatigue.

Thermal Stress and Damages

The thermal stress is a type of self-balanced internal stress, and it is often a critical issue to be concerned at the start-up and shutdown process of high-temperature facilities during which transient temperature gradients often arise inside. A typical thermal stress cycling is illustrated in Fig. 1with respect to a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • ASME Boiler and Pressure Vessel Code, Section III, Code Case N-47, 1974

    Google Scholar 

  • Bensussan P, Piques R, Pineau A (1989) On-linear fracture mechanics: volume 1, Time dependent fracture, ASTM S TP STP 995, American Society for Testing and Materials, Philadelphia, pp.27–54

    Google Scholar 

  • Coffin LF (1976) The prediction of wave shape effect in time dependent fatigue. Proc Int Conf Fracture, Brighton, London, Chapman Hall, pp.643–654

    Google Scholar 

  • Ellison EG, Patterson AJF (1976) Effect of hold time and tensile vs compressive hold on life under creep-fatigue loadings. Proc Inst Mech Eng 190:321–350

    Google Scholar 

  • Halford GR, Hirschberg MH, Manson SS 1973 In: Fatigue at elevated temperatures, STP 520, American Society for Testing and Materials, Philadelphia, p 659

    Google Scholar 

  • Inoue T, Igari T, Okazaki M (1985) Inelastic behaviors of 2.1/4 Cr-1 Mo steel under plasticity-creep interaction condition: an interim report of bench mark project by subcommittee on inelastic analysis and life prediction of high temperature materials. Nucl Eng Des 90:287–295

    Article  Google Scholar 

  • Jaske CE, Mindlin H, Perrin JS (1973) Combined low cycle fatigue and stress relaxation of alloy 800 and type 304 stainless steel at elevated temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, 365

    Google Scholar 

  • Kloops KH, Granacher J, Rieth P (1981) Fatigue behavior of a turbine rotor steel under service type strain cycling, Arch Eisenhuttenwes 52:238

    Google Scholar 

  • Majumdar S, Maiya PS (1976) A damage equation for creep-fatigue interaction. In: ASME-MPC symposium on creep-fatigue interaction, MPC-3, Metal Properties Council, New York, p 323

    Google Scholar 

  • Manson SS (1966) Thermal stress and low cycle fatigue. McGraw-Hill, New York

    Google Scholar 

  • Miller DA, Gladwin D (1987) Remaining life of boiler pressure parts creep-fatigue effect, EPRI report, Report RP2253-1, vol. 5, EPRI

    Google Scholar 

  • Miller DA, Priest RH, Ellison EG (1984) A review of material response and life prediction techniques under fatigue-creep loading conditions. High Temp Mater Processes 6(3 and 4):115–194

    Google Scholar 

  • Nikbin KM, Webster GA, Turner CE (1976) In: Cracks and fracture (Ninth conference), ASTM ATP 601, American Society for Testing and Materials, Philadelphia, pp 47–62

    Google Scholar 

  • Ohji K, Ogura K, Kubo S (1979) Stress field and modified J-integral near a crack tipunder condition of confined creep deformation. Trans Jpn Soc Mech Eng (790-13):18–20

    Google Scholar 

  • Okazaki M, Metoki A, Yamagishi S, Rajivgandhi R (2017) Small creep-fatigue crack propagation rates accelerated under small scale creep condition around cooling holes in a Ni-base superalloy. In: Beck T (ed) Proceedings of the 8th international conference on Low cycle fatigue, DVM, pp 493–498

    Google Scholar 

  • Ostergren WJ (1976) A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue. ASTM J Test Eval 4(5):327–339

    Article  Google Scholar 

  • Rice JR, Rosengren GF (1968) Journal of the Mechanics and Physics of Solids, A path independent integral and the appropriate analysis of strain concentration by notches and cracks, J Appl Mech, Trans. ASME, Vol.35, pp. 379–386.

    Article  Google Scholar 

  • Riedel H, Rice JR (1980) In: Fracture mechanics: twelfth conference, ASTM STP 700, American Society for Testing Materials, Philadelphia, pp 131–151

    Google Scholar 

  • Saxena A (1986) In: Fracture mechanics: seventeenth volume, ASTM STP 905, American Society for Testing and Materials, Philadelphia, pp 185–201

    Google Scholar 

  • Solomon HD, Coffin LF (1973) Fatigue at elevated temperatures, STP 520, American Society for Testing and Materials, Philadelphia, p 112

    Google Scholar 

  • Taira S, Ohtani R (1979) Strength of materials at high temperatures. Ohmu-Publishers, Tokyo

    Google Scholar 

  • Taira S, Ohtani R, Komatsu T (1979) Application of J-integral to high temperature crack propagation. Trans ASME J Eng Mater Technol Ser H 101:162

    Google Scholar 

  • Takahashi Y, Yaguchi M (2005) Modification of ductility exhaustion-type creep-fatigue life prediction method based on re-definition of creep damage and application to high chromium steels. Trans JSME 54:168–173

    Article  Google Scholar 

  • Viswanathan R (1993) Damage mechanisms and life assessment of high-temperature components. Asm International, Metals Park. 44073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Okazaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Okazaki, M. (2019). Creep Fatigue. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_182-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_182-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics