Skip to main content

Time-Stepping Algorithms in Nonlinear Resultant Shell Dynamics

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Dynamics in low natural frequency range; Energy conserving algorithms in shell dynamics; Nonlinear dynamics of shells

Definition

Time-stepping algorithms serve as the tool of temporal approximation of evolution equations of dynamical systems. The algorithms are divided into one-step and multistep methods depending on the number of the required preceding time steps. If the sought variable appears as explicit or implicit, the scheme is classified as explicit or implicit, respectively.

Introduction

While formulating the numerical schemes the following three criteria must be taken into account: consistency (relation between the differential equation and its discrete formulation); stability (relation between the computed solution and the exact solution of the discretized equations); convergence (connects the computed solution to the exact solution of the differential equation). In nonlinear dynamics of structures, where the interest is focused on the range of low values of natural...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armero F (2008) Assumed strain finite element methods for conserving temporal integrations in non-linear solid dynamics. Int J Numer Methods Eng 74:1795–1847

    Article  MathSciNet  Google Scholar 

  • Armero F, Romero I (2003) Energy-dissipative momentum-conserving time-stepping algorithms for the dynamics of nonlinear Cosserat rods. Comput Mech 31:3–26

    Article  MathSciNet  Google Scholar 

  • Betsch P, Janz A (2016) An energy–momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int J Numer Methods Eng 108:423–455

    Article  MathSciNet  Google Scholar 

  • Campello EMB, Pimenta PME, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48:195–211

    Article  MathSciNet  Google Scholar 

  • Cardona C, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26:2403–2438

    Article  Google Scholar 

  • Chróścielewski J, Witkowski W (2010) Discrepancies of energy values in dynamics of three intersecting plates. Int J Numer Methods Biomed Eng 26:1188–1202

    Article  Google Scholar 

  • Chróścielewski J, Makowski J, Stumpf H (1997) Finite element analysis of smooth, folded and multi-shell structures. Comput Methods Appl Mech Eng 141:1–46

    Article  Google Scholar 

  • Chróścielewski J, Makowski J, Pietraszkiewicz W (2000) Large overall motion of flexible branched shell structures. In: Ambrosio JAC, Kleiber M, (eds) Computational aspects of nonlinear structural systems with large rigid body motion. NATO Advanced Research Workshop, Pułtusk, 2–7 July 2000. pp 201–218

    Google Scholar 

  • Chróścielewski J, Lubowiecka, Witkowski W (2004a) Energy–conserving integration in six–field shell dynamics. International congress on theoretical and applied mechanics, Warsaw 15–22 Aug

    Google Scholar 

  • Chróścielewski J, Makowski J, Pietraszkiewicz W (2004b) Statics and dynamics of multi-shells: nonlinear theory and finite element method (in polish). IFTR PASci Press, Warsaw

    Google Scholar 

  • Chróścielewski J, Lubowiecka I, Witkowski W (2005) Dynamics of six-field shells in the context of energy-conserving scheme, In: Pietraszkiewicz W, Szymczak C (eds) Shell structures: theory and applications. Taylor & Francis/Balkema London, pp 303–307

    Google Scholar 

  • Gebhardt CR, Rolfes R (2017) On the nonlinear dynamics of shell structures: combining a mixed finite element formulation and a robust integration scheme. Thin-Walled Struct 118:56–72

    Article  Google Scholar 

  • Graham E, Jelenić G (2003) A general framework for conservative single-step time-integration schemes with higher-order accuracy for a central-force system. Comput Methods Appl Mech Eng 192:3585–3618

    Article  MathSciNet  Google Scholar 

  • Hughes TJR (2000) The finite element method: linear static and dynamics finite element analysis. Dover Publications, New York

    MATH  Google Scholar 

  • Ibrahimbegović A, Mamouri S, Taylor RL, Chen AJ (2000) Finite element method in dynamics of flexible multi-body systems: modeling of holonomic constraints and energy conserving integration schemes. Multibody Sys Dyn 4:195–223

    Article  Google Scholar 

  • Krasnosel’skii MA, Vainikko GM, Zabreiko PP, Rutitskii YB, Stetsenko VY (1972) Approximate solutions of operator equations. Wolters-Noordhoff Publishers, Groningen

    Book  Google Scholar 

  • Kuhl D, Crisfield MA (1999) Energy-conserving and decaying algorithms in non-linear structural dynamics. Int J Numer Methods Eng 45:569–599

    Article  MathSciNet  Google Scholar 

  • Kuhl D, Ramm E (1996) Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Comput Methods Appl Mech Eng 136:293–315

    Article  Google Scholar 

  • Lubowiecka I, Chróścielewski J (2002) On dynamics of flexible branched shell structures undergoing large overall motion using finite elements. Comput Struct 80:891–898

    Article  Google Scholar 

  • Lubowiecka I, Chróścielewski J (2005) Energy-conserving time integration algorithm for six-field irregular shell dynamics. In: ECCOMAS Thematic conference: advances in computational multibody dynamics, Universided Politecnica, Madrid, pp 1–16

    Google Scholar 

  • Newmark NN (1959) A method of computation for structural dynamics. J Eng Mech Div Proc ASCE 85:67–94

    Google Scholar 

  • Pietraszkiewicz W (2017) Elastic shells, resultant non-linear theory. In: Altenbach H, Őchsner A (eds) Encyclopedia of continuum mechanics, section: shells. Springer, Berlin et al (in print)

    Google Scholar 

  • Romero I, Armero F (2002) Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme. Int J Numer Methods Eng 54:1043–1086

    Article  MathSciNet  Google Scholar 

  • Simmonds JG (1984) The nonlinear thermodynamical theory of shells: descent from 3-dimensions without thickness expansion. In: Axelrad EL, Emmerling FA (eds) Flexible shells, theory and applications. Springer, Berlin, pp 1–11

    Google Scholar 

  • Simo JC, Tarnow N (1994) A new energy and momentum conserving algorithm for non-linear dynamics of shells. Int J Numer Methods Eng 37:2527–2549

    Article  MathSciNet  Google Scholar 

  • Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions a geometrically exact approach. Comp Meth Appl Mech Eng 66:125–161

    Article  MathSciNet  Google Scholar 

  • Simo JC, Wong KK (1991) Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int J Numer Methods Eng 31:19–52

    Article  MathSciNet  Google Scholar 

  • Simo JC, Tarnow N, Doblare M (1995) Non-linear dynamics of three-dimensional rods: exact energy and momentum conserving algorithms. Int J Numer Methods Eng 38:1431–1473

    Article  MathSciNet  Google Scholar 

  • Witkowski W (2009) 4-node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput Mech 43:307–319

    Article  Google Scholar 

  • Zolghadr Jahromi H, Izzuddin BA (2013) Energy conserving algorithms for dynamic contact analysis using newmark methods. Comput Struct 118:74–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Chróścielewski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chróścielewski, J., Witkowski, W. (2018). Time-Stepping Algorithms in Nonlinear Resultant Shell Dynamics. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_196-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_196-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics