Skip to main content

Variational Methods in Continuum Damage and Fracture Mechanics

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Variational approach to damage and fracture mechanics; Variational formulation of damage and fracture mechanics

Definitions

Damage is defined as the loss of material stiffness under loading conditions. This process is intrinsically irreversible and, therefore, dissipative. When the stiffness vanishes, fracture is achieved. In order to derive governing equations, variational methods have been employed. Standard variational methods for non-dissipative systems are here formulated in order to contemplate dissipative systems as the ones considered in continuum damage mechanics.

Principle of Least Action for Dissipative Systems

Variational principles and calculus of variations have always been important tools for formulating mathematical models of physical phenomena (dell’Isola and Placidi, 2011). Indeed, they are the main tool for the axiomatization of physical theories because they provide an efficient and elegant way to formulate and solve mathematical problems which are of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiment. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  • Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC press, Boca Raton

    MATH  Google Scholar 

  • Aslan O, Cordero N, Gaubert A, Forest S (2011) Micromorphic approach to single crystal plasticity and damage. Int J Eng Sci 49(12):1311–1325

    Article  MathSciNet  Google Scholar 

  • Bažant ZP, Jirásek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech 128(11):1119–1149

    Article  Google Scholar 

  • Bazant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55(2):287–293

    Article  MATH  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1):5–148

    Article  MathSciNet  MATH  Google Scholar 

  • Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M (2015) Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch Ration Mech Anal 218(3):1239–1262

    Google Scholar 

  • Chaboche J (1988) Continuum damage mechanics: part I–general concepts. J Appl Mech 55(1):59–64

    Article  Google Scholar 

  • Comi C, Perego U (1995) A unified approach for variationally consistent finite elements in elastoplasticity. Comput Methods Appl Mech Eng 121(1–4):323–344

    Article  MathSciNet  MATH  Google Scholar 

  • Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  MathSciNet  Google Scholar 

  • dell’Isola F, Placidi L (2011) Variational principles are a powerful tool also for formulating field theories. In: Variational models and methods in solid and fluid mechanics. Springer, Vienna, pp 1–15

    Google Scholar 

  • dell’Isola F, Madeo A, Seppecher P (2009) Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int J Solids Struct 46(17): 3150–3164

    Google Scholar 

  • dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (2014) The complete works of Gabrio Piola, vol I. Springer, Cham

    Google Scholar 

  • dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928

    Google Scholar 

  • dell’Isola F, Seppecher P, Della Corte A (2015b) The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. In: Proceeding of royal society A, vol 471, p 20150415

    Google Scholar 

  • dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22(4):852–872, https://doi.org/10.1177/1081286515616034

  • Dillard T, Forest S, Ienny P (2006) Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur J Mech-A/Solids 25(3):526–549

    Article  MATH  Google Scholar 

  • Fleck N, Willis J (2009) A mathematical basis for strain-gradient plasticity theory–part I: scalar plastic multiplier. J Mech Phys Solids 57(1):161–177

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131

    Article  Google Scholar 

  • Hill R (1948) A variational principle of maximum plastic work in classical plasticity. Q J Mech Appl Math 1(1):18–28

    Article  MathSciNet  MATH  Google Scholar 

  • Kuczma MS, Whiteman J (1995) Variational inequality formulation for flow theory plasticity. Int J Eng Sci 33(8):1153–1169

    Article  MathSciNet  MATH  Google Scholar 

  • Maier G (1970) A minimum principle for incremental elastoplasticity with non-associated flow laws. J Mech Phys Solids 18(5):319–330

    Article  MATH  Google Scholar 

  • Marigo J (1989) Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nucl Eng Design 114(3):249–272

    Article  Google Scholar 

  • Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int J Plast 84:1–32

    Article  Google Scholar 

  • Misra A, Singh V (2013) Micromechanical model for viscoelastic materials undergoing damage. Contin Mech Thermodyn 25(2–4):343–358. https://doi.ogr/10.1007/s00161-012-0262-9. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879696275&doi=10.1007%2fs00161-012-0262-9&partnerID=40&md5=e747b218a6ddf4000e16f74daab25e9b

  • Misra A, Singh V (2015) Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin Mech Thermodyn 27(4–5):787–817. https://doi.org/10.1007/s00161-014-0360-y. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932192559&doi=10.1007%2fs00161-014-0360-y&partnerID=40&md5=e0076ff9b5ca4e518698bfb50c64e89f

  • Peerlings R, Geers M, De Borst R, Brekelmans W (2001) A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38(44):7723–7746

    Article  MATH  Google Scholar 

  • Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement: I. les concepts fondamentaux. CR Mécanique 338:191–198

    Article  MATH  Google Scholar 

  • Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement: Ii. les modèles à gradient. CR Mécanique 338:199–206

    Article  MATH  Google Scholar 

  • Pham K, Marigo JJ, Maurini C (2011) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 59(6):1163–1190

    Article  MathSciNet  MATH  Google Scholar 

  • Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  MATH  Google Scholar 

  • Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin Mech Thermodyn 27(4–5):623

    Article  MathSciNet  MATH  Google Scholar 

  • Placidi L (2016) A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin Mech Thermodyn 28(1–2):119–137

    Article  MathSciNet  MATH  Google Scholar 

  • Poorsolhjouy P, Misra A (2016, in Press) Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int J Solids Struct. https://doi.org/10.1016/j.ijsolstr.2016.12.005. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008385729&doi=10.1016%2fj.ijsolstr.2016.12.005&partnerID=40&md5=a95a5f428b54a684bde22f40778fe43e

  • Reddy B (2011a) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin Mech Thermodyn 23(6):527–549

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy B (2011b) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin Mech Thermodyn 23(6):551–572

    Article  MathSciNet  MATH  Google Scholar 

  • Rokoš O, Beex LA, Zeman J, Peerlings RH (2016) A variational formulation of dissipative quasicontinuum methods. Int J Solids Struct 102:214–229

    Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  • Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 49(18):2500–2514

    Article  Google Scholar 

  • Yang Y, Ching W, Misra A (2011) Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J Nanomech Micromech 1(2):60–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Placidi, L., Barchiesi, E., Misra, A., Andreaus, U. (2018). Variational Methods in Continuum Damage and Fracture Mechanics. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_199-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_199-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics